MalText: Finding Malicious Account in Social Network using Novel Regulizer in Dynamic CNN

Author:

Wanda Putra1,Diqi Mohammad1

Affiliation:

1. Universitas Respati Yogyakarta

Abstract

Abstract Online Social Networks (OSN) are well-known platforms for exchanging various information. However, one of the most critical OSN obstacles is malicious accounts. The attacker harnesses malicious accounts in the infected system to spread false information, such as malware, viruses, and harmful URLs. Based on the significant achievement of the CNN model in various fields, we propose a dynamic CNN using a novel regulizer to handle malicious account classification with user comments as features. Using the proposed regulizer, we obtain higher scores with a testing accuracy of 0.9948 and a testing loss of 0.0984 using unseen comment features. Our experimental results demonstrate that the proposed model can significantly improve the classifier's performance by producing high accuracy with minimal loss. Therefore, the proposed method can be a promising solution for analyzing large-scale user text datasets to classify malicious text in practical implementation.

Publisher

Research Square Platform LLC

Reference26 articles.

1. Detecting malicious tweets in trending topics using a statistical analysis of language;Martinez-Romo J;Expert Syst. Appl.,2013

2. Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio Sebastiani, and Veselin Stoyanov. SemEval-2016 task 4: Sentiment analysis in Twitter. InThe 10th International Workshop on Semantic Evaluation. Association for Computer Linguistics, 2016: 1–18.

3. Character-level convolutional networks for text classification;Zhang Xiang;Advances in Neural Information Processing Systems,2015

4. Sloan. Detecting tension in online communities with computational twitter analysis;Burnap P;Technological Forecasting and Social Change,2015

5. Malicious Text Identification: Deep Learning from Public Comments and Emails;Baccouche A;Information,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3