Glucagon-like peptide-1 and glucagon-like peptide-2 are potential regulators of lipid metabolism during human liver regeneration

Author:

Ammann Markus1,Santol Jonas2,Pereyra David3,Kalchbrenner Tamara4,Wuerger Tanja4,Laengle Johannes3,Smoot Rory L.5,Hulla Wolfgang4,Laengle Friedrich1,Starlinger Patrick P.5

Affiliation:

1. Department of Surgery, State Hospital Wiener Neustadt

2. Department of Surgery, HPB Centre, Viennese Health Network, Clinic Favoriten and Sigmund Freud Private University

3. Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna

4. Department of Pathology, State Hospital Wiener Neustadt

5. Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic

Abstract

Abstract Accumulating evidence suggests that metabolic demands of the regenerating liver are met via lipid metabolism and critical regulators of this process. As such, glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) critically affect hepatic regeneration in rodent models. The present study aimed to evaluate potential alterations and dynamics of circulating GLP-1 and GLP-2 in patients undergoing liver resections, focusing on post-hepatectomy liver failure (PHLF). GLP-1, GLP-2, Interleukin-6 (IL-6) and parameters of lipid metabolism were determined perioperatively in fasting plasma of 46 patients, who underwent liver resection. GLP-1 and GLP-2 demonstrated a rapid and consistently inverse time course during hepatic regeneration with a significant decrease of GLP-1 and increase of GLP-2 on POD1. Importantly, these postoperative dynamics were significantly more pronounced when PHLF occurred. Of note, the extent of resection or development of complications were not associated with these alterations. IL-6 mirrored the time course of GLP-2. Assessing the main degradation protein dipeptidyl peptidase 4 (DPP4) no significant association with either GLP-1 or -2 could be found. Additionally, in PHLF distinct postoperative declines in plasma lipid parameters were present and correlated with GLP-2 dynamics. Our data suggest dynamic inverse regulation of GLP-1 and GLP-2 during liver regeneration, rather caused by an increase in expression/release than by changes in degradation capacity and might be associated with inflammatory responses. Their close association with circulating markers of lipid metabolism and insufficient hepatic regeneration after liver surgery suggest a critical involvement during these processes in humans.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3