Prediction of Prognosis in Glioblastoma with Radiomics Features extracted by Synthetic MR Image using Cycle-consistent GAN

Author:

yoshimura hisanori1,kawahara daisuke2ORCID,ozawa shuichi2,saito akito2,nagata yasushi2

Affiliation:

1. Hiroshima University Graduate School of Science Department of Biosphere Science: Hiroshima Daigaku Daigakuin Togo Seimei Kagaku Kenkyuka

2. Hiroshima University: Hiroshima Daigaku

Abstract

Abstract Purpose To propose a style transfer model for multi-contrast magnetic resonance imaging (MRI) images with a cycle-consistent generative adversarial network (CycleGAN) and evaluate the image quality and prognosis prediction performance for glioblastoma (GBM) patients from the extracted radiomics features. Methods Style transfer models of T1 weighted MRI image (T1w) to T2 weighted MRI image (T2w) and T2w to T1w with CycleGAN were constructed using the BraTS dataset. The style transfer model was validated with the Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) dataset. Moreover, imaging features were extracted from real and synthesized images. These features were transformed to rad-scores by the least absolute shrinkage and selection operator (LASSO)-Cox regression. The prognosis performance was estimated by the Kaplan-Meier method. Results For the accuracy of the image quality of the real and synthesized MRI images, the MI, RMSE, PSNR, and SSIM were 0.991 ± 2.10, 2.79 ± 0.16, 40.16 ± 0.38, and 0.995 ± 2.11, for T2w, and .992 ± 2.63, 2.49 ± 6.89, 40.51 ± 0.22, and 0.993 ± 3.40 for T1w, respectively. The survival time had a significant difference between good and poor prognosis groups for both real and synthesized T2w (p<0.05). However, the survival time had no significant difference between good and poor prognosis groups for both real and synthesized T1w. On the other hand, there was no significant difference between the real and synthesized T2w in both good and poor prognoses. The results of T1w were similar in the point that there was no significant difference between the real and synthesized T1w. Conclusions It was found that the synthesized image could be used for prognosis prediction. The proposed prognostic model using CycleGAN could reduce the cost and time of image scanning, leading to a promotion to build the patient’s outcome prediction with multi-contrast images.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3