Assessing thermal imagery integration into object detection methods on air-based collection platforms

Author:

Gallagher James E.1,Oughton Edward J.1

Affiliation:

1. George Mason University

Abstract

Abstract Object detection models commonly focus on utilizing the visible spectrum via Red-Green-Blue (RGB) imagery. Due to various limitations with this approach in low visibility settings, there is growing interest in fusing RGB with thermal long wave infrared (LWIR) (7.5–13.5 µm) images to increase object detection performance. However, we still lack baseline performance metrics evaluating RGB, LWIR and RGB-LWIR fused object detection machine learning models, especially from air-based platforms. This study undertakes such an evaluation finding that a blended RGB-LWIR model generally exhibits superior performance compared to traditional RGB or LWIR approaches. For example, an RGB-LWIR blend only performed 1–5% behind the RGB approach in predictive power across various altitudes and periods of clear visibility. Yet, RGB fusion with a thermal signature overlayed provides edge redundancy and edge emphasis, both which are vital in supporting edge detection machine learning algorithms. This approach has the ability to improve object detection performance for a range of use cases in industrial, consumer, government, and military applications. Finally, this research additionally contributes a novel open labeled training dataset of 6,300 images for RGB, LWIR, and RGB-LWIR fused imagery, collected from air-based platforms, enabling further multispectral machine-driven object detection research.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3