Vertical textile epifluidics for integrated real-time electrochemical sweat analysis

Author:

Galliani Marina1,Azizian Pooya2ORCID,Makhinia Anatolii3,Cabot Joan4,Ismailova Esma1ORCID

Affiliation:

1. Mines Saint-Etienne

2. Leitat

3. RISE Research Institutes of Sweden, Digital Systems

4. LEITAT Technological Center

Abstract

Abstract The non-invasive discovery of novel physiological biomarkers in sweat relies on its precise sampling and analysis. Here, we present a scalable fabrication approach of a wearable microfluidic system within fabric structures for an accurate and ergonomic sweat handling and sensing. Digital 3D printing of a flexible resin precisely defines impermeable microstructures in wicking textiles, only achievable by SLA technique. Regulated fluid collection, storage and transport, avoiding the complexity of traditional valves, is obtained by assembling 3D-printed textile-based modules in an origami-inspired vertical stack offering reduced device footprint, seamless and adhesive-free on-body sensing. The generation of pressure gradient across these microfluidic modules enables vertically distributed, capillary-driven and pre-programmed sweat flow. The tortuous flow characteristics of woven textile conduits based on the numerical fluid-dynamics simulation demonstrate the technological versatility to reproduce this controlled flow in different textile structures. The monolithic integration of textile microfluidics on garments provides unlimited, non-accumulative fluid flow through the extended air-liquid interface for its continuous flow and concomitant evaporation from the fabric surface. In-situ and in real-time sweat analysis with a remotely screen-printed flexible organic electrochemical transistor provides the possibility of various sensor integration and multi-parameter detections. The transistor successfully detects K+ ion concentrations using ion-selective membrane within the sweat physiological ionic range. This mechanically ergonomic, fabric-integrated microfluidic sensing platform, based on rapid additive manufacturing of polyhedral device configurations, offers unique strategies for device design and novel sensing perspectives for advancing wearable point-of-care diagnostics with personalized health monitoring capabilities.

Publisher

Research Square Platform LLC

Reference65 articles.

1. S. Battat, D.A. Weitz, G.M. Whitesides, Lab Chip 2022, 22, 530.

2. H. Cong, N. Zhang, Biomicrofluidics 2022, 16, 021301.

3. R. Ghaffari, D.S. Yang, J. Kim, A. Mansour, J.A. Wright, J.B. Model, D.E. Wright, J.A. Rogers, T.R. Ray, ACS Sens. 2021, 6, 2787.

4. S. Jo, D. Sung, S. Kim, J. Koo, Biomedical Engineering Letters 2021, 11, 117.

5. S. Kim, B. Lee, J.T. Reeder, S.H. Seo, S.-U. Lee, A. Hourlier-Fargette, J. Shin, Y. Sekine, H. Jeong, Y.S. Oh, A.J. Aranyosi, S.P. Lee, J.B. Model, G. Lee, M.-H. Seo, S.S. Kwak, S. Jo, G. Park, S. Han, I. Park, H.-I. Jung, R. Ghaffari, J. Koo, P.V. Braun, J.A. Rogers, Proceedings of the National Academy of Sciences 2020, 117, 27906.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3