Population-specific facial traits and diagnosis accuracy of genetic and rare diseases in an admixed Colombian population

Author:

Echeverry Luis Miguel1,Candelo Estephania2,Gómez Eidith2,Solís Paula2,Ramírez Diana2,Ortiz Diana2,González Alejandro3,Sevillano Xavier3,Cuéllar Juan Carlos4,Pachajoa Harry2,Martínez-Abadías Neus1

Affiliation:

1. Universitat de Barcelona

2. CIACER-Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras

3. Ramon Llull University

4. Icesi University

Abstract

Abstract Up to 40% of genetic and rare disorders (RD) present facial dysmorphologies, and visual assessment is commonly used for clinical diagnosis. Although quantitative approaches are more objective and accurate, most current methods based on European descent populations disregard population ancestry. Here we assessed the facial phenotypes associated to Down (DS), Morquio (MS), Noonan (NS) and Neurofibromatosis type 1 (NF1) syndromes in a Latino-American population from Colombia. We recorded the coordinates of 18 landmarks in 2D images from 79 controls and 51 pediatric patients. We quantified facial differences using Euclidean Distance Matrix Analysis, and assessed the diagnostic accuracy of Face2gene, an automatic deep-learning algorithm. Individuals diagnosed with DS and MS presented severe phenotypes, with 58.2% and 65.4% of significantly different facial traits. The percentage decreased to 47.7% in NS and 11.4% in NF1. Each syndrome presented characteristic dysmorphology patterns, supporting the diagnostic potential of facial biomarkers. However, population-specific traits were detected, and the diagnostic accuracy of Face2Gene was affected by ancestry. Accuracy was high in DS, moderate in NS and NF1, but low in MS, with low facial gestalt similarity in admixed individuals. Our study underscores that facial quantitative analysis in populations with diverse Amerindian, African and European ancestry are crucial to improve diagnostic methods.

Publisher

Research Square Platform LLC

Reference80 articles.

1. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database;Nguengang Wakap S;Eur. J. Hum. Genet.,2020

2. Enfermedades huérfanas;Viteri J;Arch. Ven. Farm. Terap.,2020

3. La atención clínica de las enfermedades raras: un reto para la educación médica;Suárez-Obando F;Med. B.A.,2018

4. Cortés, Fanny. Las enfermedades raras. Rev. Méd. Clín. Cond. 26, 425–431. https://doi.10.1016/j.rmclc.2015.06.020 (2015).

5. Why rare diseases are an important medical and social issue;Schieppati A;Lancet.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3