Visualizing mitochondrial membrane potential with FRET probes: Integrating fluorescence intensity ratio and lifetime imaging

Author:

Peng Fei1,Ai Xiangnan1,Bu Xiaoyu1,Zhao Zixuan1,Gao Baoxiang1

Affiliation:

1. Hebei University

Abstract

Abstract

Mitochondrial membrane potential (MMP) is crucial for mitochondrial function and serves as a key indicator of cellular health and metabolic activity. Traditional lipophilic cationic fluorescence intensity probes are unavoidably influenced by probe concentration, laser intensity, and photobleaching, limiting their accuracy. To address these issues, we designed and synthesized a pair of fluorescence molecules, OR-C8 and SiR-BA, based on the Förster Resonance Energy Transfer (FRET) mechanism, for dual-modality visualization of MMP. OR-C8 anchors to the inner mitochondrial membrane through strong hydrophobic interactions, while SiR-BA is expelled from mitochondria when MMP decreases, thereby regulating the FRET process. During MMP reduction, the fluorescence intensity and lifetime of OR-C8 increase, while the fluorescence intensity of SiR-BA decreases. By combining changes in fluorescence intensity ratio and fluorescence lifetime, dual-modality visualization of MMP was achieved. This method not only accurately reflects MMP changes but also provides a novel tool for in-depth studies of mitochondrial function and related disease mechanisms, offering significant potential for advancing mitochondrial research and therapeutic development.

Publisher

Springer Science and Business Media LLC

Reference15 articles.

1. Releasing Power for Life and Unleashing the Machineries of Death;Newmeyer DD;Cell,2003

2. Function and Regulation of the Divisome for Mitochondrial Fission;Kraus F;Nature,2021

3. The Role of Mitochondria in Apoptosis*;Wang C;Annu Rev Genet,2009

4. Mitochondria and Apoptosis;Mignotte B;Eur J Biochem,1998

5. Mitochondria-Associated Membranes Response to Nutrient Availability and Role in Metabolic Diseases;Theurey P;Trends Endocrinol Metab,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3