Development and validation of ferroptosis-related lncRNA features to improve prognosis prediction in ovarian cancer

Author:

Chen Keyu1,Ren Xiaojing1,Li Xiaohong1,Qi Caixia2

Affiliation:

1. Zhejiang Chinese Medical University

2. Zhejiang Provincial People’s Hospital,Hangzhou

Abstract

Abstract Background: Long non-coding RNAs (lncRNAs) are thought to be associated with several processes during cancer development and have been shown to be involved in the regulation of ferroptosis. Ovarian cancer is highly malignant tumour with a poor prognosis. The identification biomarkers with prognostic value in ovarian cancer may improve patient outcomes and can help to elucidate potential future therapeutic targets. Methods: We report differential expression of 187 ferroptosis-related lncRNAs in normal and ovarian cancer tissue. Using univariate and multivariable Cox regression analysis, we identified four lncRNAs that were strongly associated with prognosis. We constructed a prognostic risk score based on these four lncRNAs which was effectively able to distinguish between low- and high-risk OC patients based on survival time. Univariate and multivariable Cox regression analyses and time-related receiver operating characteristic curve analyses revealed that this risk score represented an independent prognostic factor in patients with ovarian cancer. And qRT-PCR was performed to further validate the reliability of the prognostic model. For clinical implementation, we developed a nomogram based on the prognostic feature and patient age. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the four ferroptosis-related lncRNAs were related to tumour immunity. Further immune infiltration analysis was performed to identify multiple immune cells associated with ferroptosis. Conclusions: we identify four novel ferroptosis-related lncRNAs as predictors of ovarian cancer prognosis and they could be applicable in clinical ferroptosis-related targeted therapies for ovarian cancer.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3