Phosphate-Driven Interfacial Self-Assembly of Silk Fibroin for Continuous Non-Covalent Growth of Nanothin Defect-Free Coatings

Author:

Wigham Caleb1,Fink Tanner D.1,Sorci Mirco1,O'Reilly Padraic2,Park Sung2,Kim Jeongae1,Zha R. Helen1

Affiliation:

1. Rensselaer Polytechnic Institute

2. Molecular Vista

Abstract

Abstract

Silk fibroin is a fiber-forming protein derived from the thread of Bombyx mori silkworm cocoons. This biocompatible protein, under the kosmotropic influence of potassium phosphate, can undergo supramolecular self-assembly driven by a random coil to β-sheet secondary structure transition. By leveraging concurrent non-specific adsorption and self-assembly of silk fibroin, we demonstrate an interfacial phenomenon that yields adherent, defect-free nano-thin protein coatings that grow continuously in time, without observable saturation in mass deposition. This non-covalent growth of silk fibroin coatings is a departure from traditionally studied protein adsorption phenomena, which generally yield adsorbed layers that saturate in mass with time and often do not completely cover the surface. Here, we explore the fundamental mechanisms of coating growth by examining the effects of coating solution parameters that promote or inhibit silk fibroin self-assembly. Results show a strong dependence of coating kinetics and structure on solution pH, salt species, and salt concentration. Moreover, coating growth was observed to occur in two stages: an early stage driven by protein-surface interactions and a late stage driven by protein-protein interactions. To describe this phenomenon, we developed a kinetic adsorption model with Langmuir-like behavior at early times and a constant steady-state growth rate at later times. Structural analysis by FTIR and photo-induced force microscopy show that small β-sheet-rich structures serve as anchoring sites for absorbing protein nanoaggregates, which is critical for coating formation. Additionally, β-sheets are preferentially located at the interface between protein nanoaggregates in the coating, suggesting their role in forming stable, robust coatings.

Funder

National Science Foundation

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3