Impairment of cerebral vascular reactivity and resting blood flow in early-staged transgenic AD mice: in vivo optical imaging studies

Author:

Jeong Hyomin1,Pan Yingtian1,Akhter Firoz1,Volkow Nora D.2,Zhu Donghui1,Du Congwu1

Affiliation:

1. Stony Brook University

2. National Institutes of Health

Abstract

Abstract Background Alzheimer’s disease (AD) is a neurodegenerative disorder with progressive cognitive decline in aging individuals that poses a significant challenge to patients due to an incomplete understanding of its etiology and lack of effective interventions. While “the Amyloid Cascade Hypothesis,” the abnormal accumulation of amyloid-β in the brain, has been the most prevalent theory for AD, mounting evidence from clinical and epidemiological studies suggest that defects in cerebral vessels and hypoperfusion appear prior to other pathological manifestations and might contribute to AD, leading to “the Vascular Hypothesis.” However, assessment of structural and functional integrity of the cerebral vasculature in vivo in the brain from AD rodent models has been challenging owing to the limited spatiotemporal resolution of conventional imaging technologies. Methods We employed two in vivo imaging technologies, i.e., Dual-Wavelength Imaging (DWI) and Optical Coherence Tomography (OCT), to evaluate cerebrovascular reactivity (CVR; responsiveness of blood vessels to vasoconstriction as triggered by cocaine) in a relatively large field of view of the cortex in vivo, and 3D quantitative cerebrovascular blood flow (CBF) imaging in living transgenic AD mice at single vessel resolution. Results Our results showed significantly impaired CVR and reduced CBF in basal state in transgenic AD mice compared to non-transgenic littermates in an early stage of AD progression. Changes in total hemoglobin (Δ[HbT]) in response to vasoconstriction were significantly attenuated in AD mice, especially in arteries and tissue, and the recovery time of Δ[HbT] after vasoconstriction was shorter for AD than WT in all types of vessels and cortical tissue, thereby indicating hypoperfusion and reduced vascular flexibility. Additionally, our 3D OCT images revealed that CBF velocities in arteries were slower and that the microvascular network was severely disrupted in the brain of AD mice. Conclusions These results suggest significant vascular impairment in basal CBF and dynamic CVR in the neurovascular network in a rodent model of AD at an early stage of the disease. These cutting-edge in vivo optical imaging tools offer an innovative venue for detecting early neurovascular dysfunction in relation to AD pathology and pave the way for clinical translation of early diagnosis and elucidation of AD pathogenesis in the future.

Publisher

Research Square Platform LLC

Reference88 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3