Measurement of Microscopic Thermal Diffusivity Distribution for Ryugu Sample by Infrared Lock-in Periodic Heating Method

Author:

Ishizaki Takuya1,Nagano Hosei2,Tanaka Satoshi1,Sakatani Naoya1,Nakamura Tomoki3,Okada Tatsuaki1,Fujita Ryohei2,Alasli Abdulkareem2,Morita Tomoyo3,Kikuiri Mizuha3,Amano Kana3,Kagawa Eiichi3,Yurimoto Hisayoshi4,Noguchi Takaaki5,Okazaki Ryuji6,Yabuta Hikaru7,Naraoka Hiroshi6,Sakamoto Kanako1,Tachibana Shogo8,Watanabe Sei-ichiro2,Tsuda Yuichi1

Affiliation:

1. Japan Aerospace Exploration Agency

2. Nagoya University

3. Tohoku University

4. Hokkaido University

5. Kyoto University

6. Kyushu University

7. Hiroshima University

8. The University of Tokyo

Abstract

Abstract The thermophysical properties of small Solar System bodies are essential to be determined, on which the thermal evolution of small bodies largely depends. The carbonaceous asteroid Ryugu is one of the small undifferentiated bodies formed in the early Solar System. Hayabusa2 explored the asteroid Ryugu and returned the surface samples in 2020 for detailed on-ground investigation, including measurements of thermal properties. Because the available sample amount was limited, this study developed a novel method to measure the thermal diffusivity of small and irregularly shaped samples of about 1 mm in diameter by combining lock-in thermography and periodic heating methods on the microscale. This method enables us to measure the thermal diffusivity of both flat-plate and granular shape samples by selecting the suitable detecting direction of the temperature response. Especially, when the sample has a flat-plate shape, the anisotropic distribution of the in-plane thermal diffusivity can be evaluated. This method was applied to six Ryugu samples, and the detailed anisotropic distribution of the thermal diffusivity was obtained. The measurement results showed that the samples show local thermal anisotropy caused by cracks and voids. The average thermal diffusivity among all samples was (2.8 − 5.8) × 10− 7 m2/s. Based on the density and specific heat of the samples obtained independently, the thermal effusivity was estimated to be 791 − 1253 J/(s1/2m2K), which is defined as the resistance of surface temperature to the change of thermal input. The determined thermal effusivity, often called thermal inertia in planetary science, is larger than the observed value of 225 ± 45 J/(s1/2m2K) of the asteroid Ryugu's surface, obtained from the diurnal temperature change of the rotating asteroid by a thermal infrared camera onboard Hayabuas2. This difference is likely to be attributed to the difference in the analytical scale between the sample and the surface boulders compared with the thermal diffusion length. Consequently, it was found that the present result is more representative of the thermal diffusivity and thermal inertia of individual Ryugu particles.

Publisher

Research Square Platform LLC

Reference23 articles.

1. T. Yokoyama, K. Nagashima, I. Nakai, E. D. Young, Y. Abe, J. Aléon, C. M. O. Alexander, S. Amari, Y. Amelin, K. Bajo, M. Bizzarro, A. Bouvier, R. W. Carlson, M. Chaussidon, B.-G. Choi, N. Dauphas, A. M. Davis, T. di Rocco, W. Fujiya, R. Fukai, I. Gautam, M. K. Haba, Y. Hibiya, H. Hidaka, H. Homma, P. Hoppe, G. R. Huss, K. Ichida, T. Iizuka, T. R. Ireland, A. Ishikawa, M. Ito, S. Itoh, N. Kawasaki, N. T. Kita, K. Kitajima, T. Kleine, S. Komatani, A. N. Krot, M.-C. Liu, Y. Masuda, K. D. McKeegan, M. Morita, K. Motomura, F. Moynier, A. Nguyen, L. Nittler, M. Onose, A. Pack, C. Park, L. Piani, L. Qin, S. S. Russell, N. Sakamoto, M. Schönbächler, L. Tafla, H. Tang, K. Terada, Y. Terada, T. Usui, S. Wada, M. Wadhwa, R. J. Walker, K. Yamashita, Q.-Z. Yin, S. Yoneda, H. Yui, A.-C. Zhang, H. C. Connolly, D. S. Lauretta, T. Nakamura, H. Naraoka, T. Noguchi, R. Okazaki, K. Sakamoto, H. Yabuta, M. Abe, M. Arakawa, A. Fujii, M. Hayakawa, N. Hirata, N. Hirata, R. Honda, C. Honda, S. Hosoda, Y. Iijima, H. Ikeda, M. Ishiguro, Y. Ishihara, T. Iwata, K. Kawahara, S. Kikuchi, K. Kitazato, K. Matsumoto, M. Matsuoka, T. Michikami, Y. Mimasu, A. Miura, T. Morota, S. Nakazawa, N. Namiki, H. Noda, R. Noguchi, N. Ogawa, K. Ogawa, T. Okada, C. Okamoto, G. Ono, M. Ozaki, T. Saiki, N. Sakatani, H. Sawada, H. Senshu, Y. Shimaki, K. Shirai, S. Sugita, Y. Takei, H. Takeuchi, S. Tanaka, E. Tatsumi, F. Terui, Y. Tsuda, R. Tsukizaki, K. Wada, S. Watanabe, M. Yamada, T. Yamada, Y. Yamamoto, H. Yano, Y. Yokota, K. Yoshihara, M. Yoshikawa, K. Yoshikawa, S. Furuya, K. Hatakeda, T. Hayashi, Y. Hitomi, K. Kumagai, A. Miyazaki, A. Nakato, M. Nishimura, H. Soejima, A. Suzuki, T. Yada, D. Yamamoto, K. Yogata, M. Yoshitake, S. Tachibana, H. Yurimoto, Science (1979), abn7850 (2022)

2. D. J. Tholen, in Asteroids II, edited by R. P. Binzel, T. Gehrels, M. Shapley. Matthews (University of Arizona Press, 1989), p. 1139

3. F. E. DeMeo, C. M. O. Alexander, K. J. Walsh, C. R. Chapman, in Asteroids IV, edited by P. Michel (University of Arizona Press, 2015), p. 13

4. T. Okada, T. Fukuhara, S. Tanaka, M. Taguchi, T. Arai, H. Senshu, N. Sakatani, Y. Shimaki, H. Demura, Y. Ogawa, K. Suko, T. Sekiguchi, T. Kouyama, J. Takita, T. Matsunaga, T. Imamura, T. Wada, S. Hasegawa, J. Helbert, T. G. Müller, A. Hagermann, J. Biele, M. Grott, M. Hamm, M. Delbo, N. Hirata, N. Hirata, Y. Yamamoto, S. Sugita, N. Namiki, K. Kitazato, M. Arakawa, S. Tachibana, H. Ikeda, M. Ishiguro, K. Wada, C. Honda, R. Honda, Y. Ishihara, K. Matsumoto, M. Matsuoka, T. Michikami, A. Miura, T. Morota, H. Noda, R. Noguchi, K. Ogawa, K. Shirai, E. Tatsumi, H. Yabuta, Y. Yokota, M. Yamada, M. Abe, M. Hayakawa, T. Iwata, M. Ozaki, H. Yano, S. Hosoda, O. Mori, H. Sawada, T. Shimada, H. Takeuchi, R. Tsukizaki, A. Fujii, C. Hirose, S. Kikuchi, Y. Mimasu, N. Ogawa, G. Ono, T. Takahashi, Y. Takei, T. Yamaguchi, K. Yoshikawa, F. Terui, T. Saiki, S. Nakazawa, M. Yoshikawa, S. Watanabe, Y. Tsuda, Nature 579, 518 (2020)

5. E. Nakamura, K. Kobayashi, R. Tanaka, T. Kunihiro, H. Kitagawa, C. Potiszil, T. Ota, C. Sakaguchi, M. Yamanaka, D. M. Ratnayake, H. Tripathi, R. Kumar, M.-L. Avramescu, H. Tsuchida, Y. Yachi, H. Miura, M. Abe, R. Fukai, S. Furuya, K. Hatakeda, T. Hayashi, Y. Hitomi, K. Kumagai, A. Miyazaki, A. Nakato, M. Nishimura, T. Okada, H. Soejima, S. Sugita, A. Suzuki, T. Usui, T. Yada, D. Yamamoto, K. Yogata, M. Yoshitake, M. Arakawa, A. Fujii, M. Hayakawa, N. Hirata, N. Hirata, R. Honda, C. Honda, S. Hosoda, Y. Iijima, H. Ikeda, M. Ishiguro, Y. Ishihara, T. Iwata, K. Kawahara, S. Kikuchi, K. Kitazato, K. Matsumoto, M. Matsuoka, T. Michikami, Y. Mimasu, A. Miura, T. Morota, S. Nakazawa, N. Namiki, H. Noda, R. Noguchi, N. Ogawa, K. Ogawa, C. Okamoto, G. Ono, M. Ozaki, T. Saiki, N. Sakatani, H. Sawada, H. Senshu, Y. Shimaki, K. Shirai, Y. Takei, H. Takeuchi, S. Tanaka, E. Tatsumi, F. Terui, R. Tsukizaki, K. Wada, M. Yamada, T. Yamada, Y. Yamamoto, H. Yano, Y. Yokota, K. Yoshihara, M. Yoshikawa, K. Yoshikawa, M. Fujimoto, S. Watanabe, Y. Tsuda, Proc. Jpn. Acad., Series B 98, 227 (2022)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3