The microbial removal of bisphenols in aquatic microcosms and associated alteration in bacterial community

Author:

Noszczyńska Magdalena1ORCID,Pacwa-Płociniczak Magdalena2,Bondarczuk Kinga3,Piotrowska-Seget Zofia2

Affiliation:

1. University of Silesia in Katowice

2. University of Silesia: Uniwersytet Slaski w Katowicach

3. Medical University of Bialystok: Uniwersytet Medyczny w Bialymstoku

Abstract

Abstract The concept of the study resulted from numerous concerns around bisphenol A (BPA) and bisphenol S (BPS) in aquatic environments. In this study, river water and sediment microcosms highly polluted with bisphenols and bioaugmented with two BPs-removing bacterial strains were constructed. The study aimed to determine the rate of high-concentrated BPA and BPS (BPs) removal from river water and sediment microniches, the effect of water bioaugmentation with bacterial consortium on the removal rates of these pollutants, and the impact of introduced strains and exposure to BPs on the structural and functional composition of the autochthonous bacterial communities. Our findings indicate that the removal activity of autochthonous bacteria was sufficient for effectively BPA elimination and reducing BPS content in the microcosms. The number of introduced bacterial cells decreased continuously until day 40, and on consecutive sampling days, no bioaugmented cells were detected. Sequencing analysis of the total 16S rRNA genes revealed that the community composition in bioaugmented microcosms amended with BPs differed significantly from those treated either with bacteria or BPs. A metagenomic analysis found an increase in the abundance of proteins responsible for xenobiotic removal in BPs-amended microcosms. This study provides new insights into the effects of bioaugmentation with a bacterial consortium on bacterial diversity and BPs removal in aquatic environments.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3