Effectiveness of strain and dopants on breaking the activity-stability trade-off of RuO2 acidic oxygen evolution electrocatalysts
Author:
Affiliation:
1. Sungkyunkwan University
2. Shandong University
3. Pohang Accelerator Laboratory
4. China University of Petroleum
Abstract
Ruthenium dioxide (RuO₂) electrocatalysts for acidic oxygen evolution reaction (OER) suffer from mediocre activity and rather instability induced by high Ru-O covalency. Here, the tensile strained Sr0.1Ta0.1Ru0.8O2-x (TS-Sr0.1Ta0.1Ru0.8O2-x) nanocatalysts were synthesized via a molten salt-assisted quenching strategy. The TS spacially elongates the Ru-O bond and reduces covalency, thereby inhibiting the lattice oxygen participation and structural decomposition. The synergistic electronic modulations among Sr-Ru-Ta groups both optimize deprotonation on oxygen sites and intermediates absorption on Ru sites, lowering the OER energy barrier. Those result in a well-balanced activity-stability profile, confirmed by comprehensive experimental and theoretical analyses. Our TS-Sr0.1Ta0.1Ru0.8O2-x electrode demonstrated an overpotential of 166 mV at 10 mA cm-2 in 0.5 M H2SO4 and an order of magnitude higher S-number, indicating exceptional stability compared to bare Sr0.1Ta0.1Ru0.8O2-x. It exhibited degradation rates of 0.02 mV/h at 10 mA cm-2 over 1000 h and 0.25 mV/h at 200 mA cm-2 over 200 h. This study elucidates the effectiveness of tensile strain and strategic doping in enhancing the activity and stability of Ru-based catalysts for acidic OER.
Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. Opportunities and challenges for a sustainable energy future;Chu S;Nature,2012
2. Atomically dispersed hexavalent iridium oxide from MnO2 reduction for oxygen evolution catalysis;Li A;Science,2024
3. Acid-Stable Oxides for Oxygen Electrocatalysis;Wang Z;ACS Energy Lett,2020
4. Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment;An L;Adv Mater,2021
5. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction;Grimaud A;Nat Energy,2016
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3