Multi-omics analysis unravels the underlying mechanisms of the escape response of the common strain black carp

Author:

Xu Yuanfeng1,Dong Ping1,Sewo Daniel Yohannes1,Su Shengyan1,Li Jianlin1,Feng Wenrong1,Liao Yu2,Tang Yongkai1

Affiliation:

1. Wuxi Fisheries College, Nanjing Agricultural University

2. Guangxi Fisheries Introduction and Cultivation Center

Abstract

Abstract Reducing the escape response of fish during the aquaculture has important economic value and ecological safety significance. This study takes the common strain black carp (Cyprinus carpio var. baisenensis), which is known for its low-escape response, as the main research object. Through a simulated flood experiment, the common strain black carps were divided into the low-escape (BL) group and the high-escape (BH) group. Multi-omics techniques:transcriptome sequencing, LS-MS/MS detection, and 16s sequencing were used to analyze the differences in brain gene transcription levels, liver metabolites, and intestinal microbiota composition between the two groups. In addition, in order to reduce false positives generated by transcriptome experiments, Jian carps (Cyprinus carpio var. Jian) were also grouped into the low-escape (JL) group and the high-escape (JH) group and subjected to transcriptome analysis. According to the differentially expressed genes (DEGs) analysis, 18 DEGs were obtained from both the common strain black carp and Jian carp. Except for the MAP6 gene, which was significantly highly expressed, the remaining 17 genes showed significantly low expression in the BL group, which were almost related to signal transduction, and brain tissue and neuronal development. The results of KEGG signaling pathway annotation, KOG functional annotation, and topGO enrichment analysis showed that there were significant differences in signal transduction between the BL and BH groups, especially in the gama aminobutyric acid (GABA) signaling pathway. The detection of liver metabolites showed that there were differences in tryptophan metabolism between the BL and BH groups of the common strain black carp, with higher tryptophan content in the liver of the BL group fish. This study suggests that the brain activity and development of low-escape fish may be lower than that of high-escape fish. Meanwhile, differences in the brain's GABA signaling pathway and the liver's tryptophan metabolismmay also affect fish's escape response. This study accumulates experimental foundation of fish escape response, and provides a new insight into breeding low-escape fish and developing novel strategies to reduce escape responses during aquaculture.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3