Malignant potential of breast cancer stem cells is associated with environment- dependent upregulation of the Oct3/4 network

Author:

Rajan Robin G.1,Krutilina Raisa I.2,Ignatova Tatyana N.2,Pavicevich Zoran S.2,Dulatova Galina M.2,Lane Maria N.2,Chatterjee Arindam R.3,Rooney Robert J.2,Antony Mymoon4,Hagerty Vivian R.5,Kukekov Nickolay V.,Hanafy Khalid A.1,Vrionis Frank D.1

Affiliation:

1. Boca Raton Regional Hospital

2. University of Tennessee Health Sciences Center

3. Washington University School of Medicine

4. Wellington Regional Medical Center

5. Florida Atlantic University College of Medicine

Abstract

Abstract Introduction: The pioneer transcriptional factors (PTFs) of the Oct3/4 network including Oct3/4, Nanog, Sox2, Sall4 (ONSS), have been associated with breast cancer. Regulation of ONSS and other factors in this network were assessed for their role in malignancy. Methods: Triple negative breast cancer cell line (MDA-MB-231) transfected with human Oct3/4-GFP promoter was sorted using FACS. Differentially expressed genes (DEGs) were identified using qPCR and microarray. 3D mammospheres (CSC) from Oct3/4(+) cells were assessed for stable Oct3/4 expression. Tumor seeding and lung metastatic potential of Oct3/4(+) cells were assessed in immunocompromised mice. DEGs in the tumors were assessed with respect to implanted tissue (SQ, lungs or brain), recurrence, and metastases. Expression of CD44+/CD24- was evaluated using flow cytometry. Resistance of Oct3/4(+) cells to paclitaxel was assessed using MTS assay. Results: Oct3/4-GFP expression was stable in mammospheres. Oct3/4(+) cells showed 25 DEGs and significant resistance to paclitaxel when compared to non-transfected cells. Upregulated growth and developmental genes included Gata6, FoxA2, Sall4, Zic2, H2afJ, Stc1 and Bmi1. The Oct3/4(+) cells also showed enhanced tumorigenic potential and aggressive growth in immunocompromised mice. Additionally, this modulated transcriptome of the Oct3/4 (+) cells showed further upregulation of several genes in metastatic lung lesions in mice (> 5 fold) compared to orthotopic tumors including Oct4A, Bmi1, Ezh2, Klf5, Hox7B, Gja1, Stc1, Amigo2 and Dkk1. Serially re-implanting tumors in mice as a model of recurrence and metastasis highlighted Sall4, c-Myc, Mmp1, Mmp9 and Dkk1 genes in maintaining an upregulated expression specifically in metastatic lesions and a 2-fold higher expression of stem cell phenotype markers (CD44+/CD24-). Overall Oct3/4 expression in tumors in lungs, brain and metastases were significantly higher than orthotopic mammary fat pad tumors. Additionally, the transcriptome was most upregulated in brain except for Gja1 and H2faJ, indicating tissue-specific regulation of this transcriptome. Conclusion: ONSS and other Oct3/4 related factors may drive the differentiation and maintenance of breast cancer stem cells and may promote their tumorigenic potential and resistance to drugs such as paclitaxel. However, there is tissue-specific heterogeneity in the differential upregulation of this transcriptome as well stemness phenotype of tumors in these tissues.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3