Spatial Pattern of Bias in Areal Rainfall Estimations and Its Impact on Hydrological Modeling: A Comparative Analysis of Estimating Areal Rainfall Based on Radar and Weather Station Networks in South Korea

Author:

So Byung-Jin1,Kim Hyung-Suk2,Kwon Hyun-Han3

Affiliation:

1. Hanyang University

2. Kunsan National University

3. Sejong University

Abstract

Abstract Areal rainfall is routinely estimated based on the observed rainfall data using distributed point rainfall gauges. However, the data collected are sparse and cannot represent the continuous rainfall distribution (or field) over a large watershed due to the limitations of weather station networks. Recent improvements in remote-sensing-based rainfall estimation facilitate more accurate and effective hydrological modeling with a continuous spatial representation of rainfall over a watershed of interest. In this study, we conducted a systematic stepwise comparison of the areal rainfalls estimated by a synoptic weather station and radar station networks throughout South Korea. The bias in the areal rainfalls computed by the automated synoptic observing system and automatic weather system networks was analyzed on an hourly basis for the year 2021. The results showed that the bias increased significantly for hydrological analysis; more importantly, the identified bias exhibited a magnitude comparable to that of the low flow. This discrepancy could potentially mislead the overall rainfall-runoff modeling process. Moreover, the areal rainfall estimated by the radar-based approach significantly differed from that estimated by the existing Thiessen Weighting approach by 4–100%, indicating that areal rainfalls from a limited number of weather stations are problematic for hydrologic studies. Our case study demonstrated that the gauging station density must be within 10 km2 on average for accurate areal rainfall estimation. This study recommends the use of radar rainfall networks to reduce uncertainties in the measurement and prediction of areal rainfalls with a limited number of ground weather station networks.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3