An in-Silico approach to evaluate the binding efficacy and stability profile of MWCNT entangled rutin for breast cancer treatment

Author:

Bhusan Kirthi1,Ammunje Damodar Nayak1,Kunjiappan Selvaraj2,Jyaraman Anbu1,Devi Manisha1,Pavadai Parasuraman1

Affiliation:

1. M S Ramaiah University of Applied Sciences

2. Kalasalingam Academy of Research and Education

Abstract

Abstract Cancer is one of the most devastating diseases and ranks second in a total number of deaths caused globally. In recent years there is a steady increase in breast cancer (BC) incidence due to several etiological factors. Due to indiscriminate drug delivery and the lack of target specificity, current cancer therapies can cause life-threatening side effects. The present research emphasises targeting the rutin-loaded onto carbon nanotubes (CNTs) for breast cancer treatment. Intermolecular interaction studies between rutin (PubChem CID 5280805) and the target protein folate receptor (PDB ID 4LRH) via Autodock Vina programme and PyRx tool was carried out, and the docking score was found to be -8.7 Kcal mol− 1. In comparison, that of the standard chemotherapeutic drug 5-Fluorouracil was − 5.9 Kcal mol− 1. Molecular dynamic studies were performed via Desmond for 100ns. The root-mean-square deviation (RMSD) value of the ligand remained stable, root-mean-square fluctuation (RMSF) values have been observed to be stable throughout the simulation time. Based on these promising results, rutin-loaded CNTs can be further evaluated for their efficacy against breast cancer preclinically.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3