QTL Mapping of a Brazilian Bioethanol Strain Unravels the Cell Wall Protein-Encoding Gene GAS1 as a Major Contributor to Low Ph Tolerance in S. Cerevisiae

Author:

Coradini Alessandro L V1,de Mello Fellipe da Silveira Bezerra2,Furlan Monique2,Maneira Carla2,Carazzolle Marcello Falsarella2,Pereira Goncalo Amarante Guimarães3ORCID,Teixeira Gleidson Silva2

Affiliation:

1. University of Southern California Dana and David Dornsife College of Letters Arts and Sciences

2. UNICAMP: Universidade Estadual de Campinas

3. Universidade Estadual de Campinas

Abstract

Abstract BACKGROUNDSaccharomyces cerevisiae is largely applied in many biotechnological processes, from traditional food and beverage industries to modern biofuel and biochemicals factories. During the fermentation process, yeast cells are usually challenged in different harsh conditions, which often impact productivity. Regarding bioethanol production, cell exposure to acidic environments is related to productivity loss on both first and second generation ethanol. In this scenario, indigenous strains traditionally used in fermentation stand out as a source of complex genetic architecture, mainly due to their highly robust background - including low pH tolerance. RESULTSIn this work, we pioneer the use of QTL mapping to uncover the genetic basis that endow industrial strain Pedra-2 (PE-2) with outstanding acid resistance. First, we developed a fluorescence-based high-throughput approach to collect a large number of haploid cells using flow cytometry. Then, we were able to apply a bulk segregant analysis to solve the genetic basis of low pH resistance in PE-2, which uncovered a region in chromosome XIII as the major QTL associated with the evaluated phenotype. A reciprocal hemizygosity analysis revealed allele GAS1, encoding a β-1,3-glucanosyltransferase, as the major contributor to this phenotype. The GAS1 sequence alignment of 48 S. cerevisiae strains pointed out a non-synonymous mutation (T211A) prevalence in wild type isolates, which is absent in laboratory strains. We further showcase that GAS1 allele swap between PE-2 and a low pH-susceptible strain can improve cell viability on the latter of up to 12% after a sulfuric acid wash process.CONCLUSIONThis work revealed GAS1 as the major causative gene associated with low pH resistance in PE-2, harboring a non-synonymous mutation persistent in industrial strains. We also showcase how GAS1PE-2 can improve acid resistance of a susceptible strain, suggesting that these findings can be a powerful foundation for the development of more robust and acid-tolerant strains for the industrial production of economically-relevant goods. Our results collectively show the importance of tailored industrial isolated strains in the discovery of the genetic architecture of relevant traits and its implications over productivity.

Publisher

Research Square Platform LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3