Affiliation:
1. First Affiliated Hospital of Gannan Medical University
2. Gannan Medical University
Abstract
Abstract
Prostate cancer (PCa) is a malignant tumor of the male reproductive system, and its incidence has increased significantly in recent years. This study aimed to further identify candidate biomarkers with prognostic and diagnostic significance by integrating gene expression and DNA methylation data from PCa patients through association analysis. To this end, this paper proposes a sparse partial least squares regression algorithm based on hypergraph regularization (HR-SPLS) by integrating and clustering two kinds of data. Next, module 2, with the most significant weight, was selected for further analysis according to the weight of each module related to DNA methylation and mRNAs. Based on the DNA methylation sites in module 2, this paper uses multiple machine learning methods to construct a PCa diagnosis-related model of 10-DNA methylation sites. The results of ROC analysis showed that the DNA methylation-related diagnostic model we constructed could diagnose PCa patients with high accuracy. Subsequently, based on the mRNAs in module 2, we constructed a prognostic model for 7-mRNAs (MYH11, ACTG2, DDR2, CDC42EP3, MARCKSL1, LMOD1, and MYLK) using multivariate Cox regression analysis. The prognostic model could predict the disease free survival of PCa patients with moderate to high accuracy (AUC=0.761). In addition, GSEA and immune analysis indicated that the prognosis of patients in the risk group might be related to immune cell infiltration. Our findings may provide new methods and insights for identifying disease-related biomarkers by integrating DNA methylation and gene expression data.
Publisher
Research Square Platform LLC
Reference28 articles.
1. Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, Macintyre MF, Allen C, Hansen G, Woodbrook R, CJJO W. The global burden of cancer 2013. 2015;1(4):505.
2. Prostate specific antigen best practice statement: 2009 update;Greene KL;J Urol,2013
3. Li W et al. “Gene Expression Analysis Reveals Prognostic Biomarkers of the Tyrosine Metabolism Reprogramming Pathway for Prostate Cancer.” Journal of oncology vol. 2022 5504173. 6 Jul. 2022, doi:10.1155/2022/5504173
4. Wo Q et al. “Identification of Ferroptosis-Associated Genes in Prostate Cancer by Bioinformatics Analysis.” Frontiers in genetics vol. 13 852565. 4 Jul. 2022, doi:10.3389/fgene.2022.852565
5. Wen C et al. “Signature for Prostate Cancer Based on Autophagy-Related Genes and a Nomogram for Quantitative Risk Stratification.” Disease markers vol. 2022 7598942. 7 Jul. 2022, doi:10.1155/2022/7598942