Process parameters optimisation for selective laser melting of AlSi10Mg-316L multi-materials using machine learning method

Author:

Miao Huan,Yusof Farazila1,Karim Mohd Sayuti Ab,Badruddin Irfan Anjum,Hussien Mohamed,Kamangar Sarfaraz,Zhang Hao

Affiliation:

1. University of Malaya

Abstract

Abstract The present work focuses on process parameters optimisation for selective laser melting (SLM) of AlSi10Mg-316L multi-materials using machine learning method. The mechanical properties of the multi-material samples were measured at different process parameters. These process parameters and properties data were used to train and validate the machine learning model. A multi-output Gaussian process regression (MO-GPR) model was developed to directly predict the multidimensional output to overcome the limitations of the standard Gaussian process regression (GPR) model. Based on the prediction data, process parameter maps were constructed, and the optimal process parameters for different compositions were selected from the process parameter maps. The results showed that the laser power, scan velocity and hatching space have an important influence on the density and surface roughness of the samples. Results also indicated that there is no linear functional relationship between the optimal volumetric energy density (VED) values and the AlSi10Mg-316L compositions.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3