Affiliation:
1. Shahid Sadoughi University of Medical Sciences and Health Services
2. Medical University of Vienna Department of Ophthalmology and Optometry
Abstract
Abstract
Purpose: This study aimed to investigate the diagnostic accuracy of deep convolutional neural networks for classifying the polar map images in Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) by considering the physician’s diagnosis as reference.Methods: 3318 images of stress and rest polar maps related to patients (67% women and 33% men) who underwent 99mTc-sestamibi MPI were collected. The images were manually labeled with normal and abnormal labels according to the doctor’s diagnosis reports. The proposed deep learning model was trained using stress and rest polar maps and evaluated for prediction of obstructive disease in a stratified 5-fold cross-validation procedure.Results: The mean values of accuracy, sensitivity, accuracy, specificity, f1 score, and the area under the roc curve were 0.7562, 0.7856, 0.5748, 0.7434, 0.6646, and, 0.8450, respectively over 5 folds using both stress and rest scans. The inclusion of rest perfusion maps significantly improved AUC of the deep learning model (AUC: 0.845; 95% CI: 0.832-0.857), compared with using stress polar maps only (AUC: 0.827; 95% CI: 0.814-0.840); P < 0.05.Conclusion: The results of the present work reveal the possible applications of deep learning for polar map images classification in SPECT MPI.
Publisher
Research Square Platform LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献