Real-time milling force monitoring based on a parallel deep learning model with dual-channel vibration fusion

Author:

Chen Kunhong1,Zhao Wanhua,Zhang Xing

Affiliation:

1. Xi'an Jiaotong University School of Mechanical Engineering

Abstract

Abstract Milling force is one of the most important aspects of milling. Its dynamic excitation effect significantly impacts both product quality and machining productivity. Nevertheless, the force amplitude changes dramatically when the tool and the workpiece begin to contact or separate. Most current research does not consider this phenomenon. This article presents a parallel integration deep learning approach to address the issue. First, this study analyzes the relationship between milling force and vibration signals and sets the dual-channel vibration signals in the same direction as the model's inputs. Then this study proposed an encoder-decoder network to realize force monitoring. Considering that the acquired vibration signal contains much noise and needs to be preprocessed, the encoder comprises long-short term memory(LSTM) networks and a fully connected (FC) network to realize adaptive filtering and feature extraction. Multiple-layer FC network forms the decoder part to reconstruct the milling force signal because of the nonlinear relationship between the vibration and force signals. Thirdly is to obtain the parallel monitoring model. The first monitoring model is obtained through the training procedure. The results of the first model are subtracted from the measured cutting force signal to get the residual part. Then, the residual part is set as the output while training the residual monitoring model. Finally, the force monitoring model is derived using the parallel integration method. The experimental results demonstrate that this study's monitoring model can provide real-time, high-precision, and reliable milling force monitoring under various cutting conditions.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3