Overwintering aggregation patterns of a freshwater giant

Author:

Westrelin Samuel1,Moreau Mathieu2,Fourcassié Vincent2,Santoul Frédéric3

Affiliation:

1. INRAE, Aix Marseille Univ, Pôle R&D ECLA, RECOVER

2. Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université Paul Sabatier, CNRS, UMR5169

3. Laboratoire Evolution & Diversité Biologique, Université Paul Sabatier, CNRS, ENFA, UMR5174 EDB

Abstract

Abstract Animal aggregation, particularly in large-bodied species, is both a fascinating and intriguing phenomenon. Here we analyzed the overwintering behavior of the European catfish, Silurus glanis Linnaeus, 1758, the largest freshwater fish in Europe. By tracking 47 subadults and adults in a shallow lake in southeastern France, we reported a consistent aggregative behavior across four successive winters. By implementing time series analysis and Cox proportional hazard models, we investigated the dynamics of these aggregations (formation, stability, dislocation), and the factors that govern it, whether external (temperature, time of the day) or specific to the fish (size, key individuals). These aggregations lasted 1.5–2 months and mainly took place in a single small 4m-deep area whose environmental conditions (temperature, oxygen, substrate) did not differ from other parts of the lake. In some periods during winter, all tagged fish were aggregated, which suggests that a large proportion of the lake population gathered there. Low temperatures (below 9°C) triggered the formation of aggregations. They became more stable with decreasing temperatures, while individuals more frequently left the aggregation, preferentially at dusk and at night, when temperatures increased. The largest individuals swam more frequently back and forth to the aggregation. Irrespective of their size, some individuals consistently arrived earlier in the aggregation in winter and left later. This could mean that some individuals seek social interactions while others are more independent. This predictable seasonal grouping of individuals and, more generally, the knowledge provided by such studies on how species use space have important operational value and are useful for species conservation as well as for species control.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3