Silicon and Carbon nanocages as catalysts of CO 2 reduction reaction

Author:

Li XiLan1,Wang Jing1,Wei XiaoLi2

Affiliation:

1. ZhuHai College of Science and Technology

2. SiCHuan University of Science and Engineering

Abstract

Abstract In this study, the catalytic abilities of on Ni-C50 and Ni-Si50 nanocages for CO2 reduction reaction to CO, CH4, HCOOH, HCHO and CH3OH creation are examined by theoretical methods. The possible mechanisms for CO2 reduction reaction are examined and ΔGreaction of reaction steps to produce the CO, CH4, HCOOH, HCHO and CH3OH on Ni-C50 and Ni-Si50 nanocages are calculated. Results indicated that, the rate limiting step for CH4 and CH3OH production is the nanocage-*CO → nanocage-*CHO on Ni-C50 and Ni-Si50 nanocages. Results shown that the overpotential of CO2 reduction reaction on Ni-C50 and Ni-Si50 nanocages are lower than various metal catalysts. It can be concluded that the Ni-Si50 nanocage has more negative ΔGreaction values and lower free barrier energy than Ni-C50 nanocage to process the reaction steps of CO2 reduction. Results demonstrated that the overpotential for CH4 and CH3OH production are lower than HCOOH and HCHO creation on Ni-C50 and Ni-Si50 nanocages. Finally, the Ni-C50 and Ni-Si50 nanocages are proposed as novel catalysts for CO2 reduction reaction to produce the CO, CH4, HCOOH, HCHO and CH3OH species.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3