Rapid tropicalization evidence of subtidal seaweed assemblages along a coastal transitional zone

Author:

de Azevedo Jonas1,Franco João N.2,Vale Cândida G.1,Lemos Marco2,Arenas Francisco1

Affiliation:

1. CIIMAR - Interdisciplinary Centre of Marine and Environmental Research

2. Instituto Politécnico de Leiria -ESTM

Abstract

Abstract Anthropogenic climate change, particularly seawater warming, is expected to drive quick shifts in marine species distribution transforming coastal communities. These shifts in distribution will be particularly noticeable in biogeographical transition zones. The continental Portuguese coast stretches from north to south along 900 Km. Despite this short spatial scale, the strong physical gradient intensified by the Iberian upwelling creates a transition zone where seaweed species from boreal and Lusitanian-Mediterranean origin coexist. On the northern coast, kelp marine forests thrive in the cold, nutrient-rich oceanic waters. In the south, communities resemble Mediterranean-type seaweed assemblages and are dominated by turfs. Recent evidence suggests that in these coastal areas, marine intertidal species are shifting their distribution edges as a result of rising seawater temperatures. Taking advantage of previous abundance data collected in 2012 from subtidal seaweed communities, a new sampling program was carried out in the same regions in 2018 to assess recent changes. The results confirmed the latitudinal gradient in macroalgal assemblages. More importantly we found significant structural and functional changes in a short period of six years, with regional increases of abundance of warm-affinity species, small seaweeds like turfs. Species richness, diversity, and biomass increase, all accompanied by an increase of community temperature index (CTI). Our findings suggest that subtidal seaweed communities in this transitional area have undergone major changes within a few years. Evidence of “fast tropicalization” of the subtidal communities of the Portuguese coast are strong indication of the effects of anthropic climate change over coastal assemblages.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3