Identification of genomic regions for deep-water resistance in rice for efficient weed control with reduced herbicide use

Author:

Iwasa Marina1,Chigira Koki1,Nomura Tomohiro1,Adachi Shunsuke1,Asami Hidenori2,Nakamura Tetsuya3,Motobayashi Takashi1,Ookawa Taiichiro1

Affiliation:

1. Tokyo University of Agriculture and Technology

2. NARO Western Region Agricultural Research Center

3. Yukimai Design Co. LTD

Abstract

Abstract Deep-water (DW) management in rice fields is a promising technique for efficient control of paddy weeds with reduced herbicide use. Maintaining a water depth of 10–20 cm for several weeks can largely suppress the weed growth, though it also inhibits rice growth because the DW management is usually initiated immediately after transplanting. Improving the DW resistance of rice during the initial growth stage is essential to avoid suppressing growth. In this study, we demonstrate a large genetic variation in the above-ground biomass (AGB) after the end of DW management among 165 temperate japonica varieties developed in Japan. Because the AGB closely correlated with plant length (PL) and tiller number (TN) at the early growth stage, we analyzed genomic regions associated with PL and TN by conducting a genome-wide association study. For PL, a major peak was detected on chromosome 3 (qPL3), which includes a gene encoding gibberellin biosynthesis, OsGA20ox1. The rice varieties with increased PL had a higher expression level of OsGA20ox1 as reported previously. For TN, a major peak was detected on chromosome 4 (qTN4), which includes NAL1 gene associated with leaf morphological development and panicle number. Although there was less difference in the expression level of NAL1 between genotypes, our findings suggest that an amino acid substitution in the exon region is responsible for the phenotypic changes. We also found that the rice varieties having alternative alleles of qPL3 and qTN4 showed significantly higher AGB than the varieties with the reference alleles. Our results suggest that OsGA20ox1 and NAL1 are promising genes for improving DW resistance in rice.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3