Combinatorial slot-die coating for high-throughput compositional screening of perovskite solar cells

Author:

Li Jinzhao1,Shargaieva Oleksandra1,Maticiuc Natalia1,Zizak Ivo1,List-Kratochvil Emil1,Unger Eva1

Affiliation:

1. Helmholtz Zentrum Berlin für Materialien und Energie

Abstract

Abstract We here present a generic methodology enabling the accelerated optimization of the composition and processes conditions for functional solution-processable materials compatible with later transfer of optimized conditions to scaled device manufacturing. In combinatorial slot-die coating, two or more precursor inks are fed with different rates into the slot-die enabling fast screening of the precursor solution composition on coating property in one experimental run, which can either be implemented as consecutive coatings with different compositions or as a continuous compositional gradient. As a first example, we here present combinatorially slot-die coated halide perovskite thin-films ranging from the precursor compositions of pure formamidinium lead iodide, FAPbI3, to methylammonium lead bromide, MAPbBr3. In this series, both the optical and morphological properties of the deposited thin-films change dramatically. An increasing faction of MAPbBr3 resulted in larger optical bandgaps. At very high MAPbBr3 ratios, differences in the thin-film crystallization kinetics due to the simultaneous change of the precursor solution solvent resulted in thin-films with low quality morphology. The spatial compositional homogeneity of the coated thin-films was characterized by grazing incidence wide angle X-ray scattering mapping. We fabricated inverted perovskite solar cells in the full compositional range and found a performance maximum for FAPbI3-richer devices with a MAPbBr3-content of 20 mol%. The performance maximum can be rationalized with the improved thermodynamic stability of the halide perovskite crystal structure due to a more ideal tolerance factor upon incorporation of the smaller methylammonium cation and bromide anion into the crystal structure. At high MAPbBr3-content, the device performance drops due to two effects: light-induced phase-segregation and a dramatically decreased thin-film morphology exhibiting pinholes. The example highlights the critical balance of precursor solution composition and processing conditions as the crystallization kinetics critically affect the resulting thin-film quality and morphology. This generic methodology can be further optimized and exploited to identify optimal precursor solution compositions and process conditions to achieve high-quality thin films with a target composition and sample morphology with high experimental throughput.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3