In-Silico analysis of HAND subclass bHLH transcription factor in Cardiogenesis

Author:

Choudhury Shouhartha1

Affiliation:

1. Assam University

Abstract

Abstract Background: The HANDs are muscle-specific bHLH TFs crucial for proper cardiac and extra-embryonic development. The eHAND and dHAND functioned in developing ventricular chambers (right and left ventricle), aortic arch arteries, cardiac neural crest, endocardium and epicardium. The down-regulated response of the eHAND and dHAND genes reflects permissiveness. A recent report suggested that cardiac hypertrophy intimate eHAND corresponds to cardiomyopathy and dHAND in the atrium. Those reports supported the cardiac muscles may re-initiate a fetal gene result and initiate physiological changes, which allow the heart to recompense. Objective: In this study, the objective is an investigation of the HAND subclass bHLH transcription factors in mammals. I like to classify the bHLH TFs and discuss the genetic evidence of both eHAND and dHAND genes in cardiogenesis. So, perform bioinformatics and computational tools and techniques to the current knowledge of the HAND subclass bHLH transcription factor in the mammalian genome. This application may be valuable for future functional analysis of particular TFs in different organisms. Results: The observation data demonstrated that the heart and neural crest derivative transcription factors are present in mammals. The two mammalian genomes' likelihood of Homo sapiens and Mus musculus perform for comparative analysis. Analysis data suggested the eHAND and dHAND genes and a total number of bHLH domains in Homo sapiens and Mus musculus. Also, the conserved domain, motifs, phylogeny, gene expression and chromosome location analysis demonstrated the heart and neural crest derivative factors associated with cardiogenesis. Conclusion: Over the last decades, a wealth of new reports has been composed of unique genetic and phenotypic characteristics of cardiac morphogenesis. The mutational analysis of the eHAND and dHAND transcription factors enabled precise resolution of specialized function during the developing myocardium. Also, analysis data concluded the muscle-specific transcription factors eHAND and dHAND are associated with cardiac disease and development. In contrast, the tissue-specific bHLH and other TFs lead to the development of myogenesis and vasculogenesis.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3