Autoencoder-Based Data Clustering for Identifying Anomalous Repetitive Hand Movements, and Behavioral Transition Patterns in Children

Author:

Wedasingha Nushara Deshith1,Samarasinghe Pradeepa1,Senevirathe Lasantha1,Papandrea Michela2,Puiatti Alessandro2

Affiliation:

1. Sri Lanka Institute of Information Technology - Malabe Campus: Sri Lanka Institute of Information Technology

2. University of Applied Sciences and Arts of Southern Switzerland: Scuola Universitaria Professionale della Svizzera Italiana

Abstract

Abstract

The analysis of repetitive hand movements and behavioral transition patterns holds particular significance in detecting atypical behaviors in early child development. Early recognition of these behaviors holds immense promise for timely interventions, which can profoundly impact a child's well-being and future prospects. However, the scarcity of specialized medical professionals and limited facilities has made detecting these behaviors and unique patterns challenging using traditional manual methods. This highlights the necessity for automated tools to identify anomalous repetitive hand movements and behavioral transition patterns in children. Our study aimed to develop an automated model for the early identification of anomalous repetitive hand movements and the detection of unique behavioral patterns. Utilizing autoencoders, self-similarity matrices, and unsupervised clustering algorithms, we analyzed skeleton and image-based features, repetition count, and frequency of repetitive child hand movements. This approach aimed to distinguish between typical and atypical repetitive hand movements of varying speeds, addressing data limitations through dimension reduction. Additionally, we aimed to categorize behaviors into clusters beyond binary classification. Through experimentation on three datasets (HMW, SSBD, ASD), our model effectively differentiated between typical and atypical hand movements, providing insights into behavioral transitional patterns. This aids the medical community in understanding the evolving behaviors in children. In conclusion, our research addresses the need for early detection of atypical behaviors through an automated model capable of discerning repetitive hand movement patterns. This innovation contributes to early intervention strategies for neurological conditions.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3