A novel HPNVD descriptor for 3D local surface description

Author:

Sa Jiming1,Zhang Xuecheng1,Zhang Chi1,Song Yuyan1,Ding Liwei1,Huang Yechen1

Affiliation:

1. Wuhan University of Technology

Abstract

Abstract

Existing methods for 3D local feature description often struggle to achieve a good balance in distinctiveness, robustness, and computational efficiency. To address this challenge, a novel 3D local feature descriptor named Histograms of Projected Normal Vector Distribution (HPNVD) is proposed. The HPNVD descriptor consists of two main components. First, a Local Reference Frame (LRF) is constructed based on the covariance matrix and neighborhood projection to achieve invariance to rigid transformations. Then, the local surface normals are projected onto three coordinate planes within the LRF, which allows for effective encoding of the local shape information. The projection plane is further divided into multiple regions, and a histogram is computed for each plane to generate the final HPNVD descriptor. Experimental results demonstrate that the proposed HPNVD descriptor achieves a good balance among distinctiveness, robustness, and computational efficiency. Moreover, the HPNVD-based point cloud registration algorithm shows excellent performance, further validating the effectiveness of the descriptor.

Publisher

Research Square Platform LLC

Reference46 articles.

1. Using spin images for efficient object recognition in cluttered 3D scenes;Johnson AE;IEEE Transactions on pattern analysis and machine intelligence,1999

2. 3D free-form object recognition in range images using local surface patches;Chen H;Pattern Recognition Letters,2007

3. A. Frome, D. Huber, R. Kolluri, T. Bülow, J. Malik, Recognizing objects in range data using regional point descriptors, in: Computer Vision-ECCV 2004: 8th European Conference on Computer Vision, Prague, Czech Republic, May 11–14, 2004. Proceedings, Part III 8, Springer, 2004, pp. 224–237.

4. R.B. Rusu, N. Blodow, M. Beetz, Fast point feature histograms (FPFH) for 3D registration, in: 2009 IEEE international conference on robotics and automation, IEEE, 2009, pp. 3212–3217.

5. Rotational projection statistics for 3D local surface description and object recognition;Guo Y;International journal of computer vision,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3