Affiliation:
1. Forschungszentrum Jülich
2. Forschungszentrum Jülich GmbH
Abstract
Abstract
Superconducting electrodes are an integral part of hybrid Josephson junctions used in many applications including quantum technologies. We report on the fabrication and characterization of superconducting hybrid Au/YBa2Cu3O7 − x (YBCO) electrodes on vicinal substrates. In these structures, superconducting CuO2-planes face the gold film, resulting in a higher value and smaller variation of the induced energy gap compared to the conventional Au/YBCO electrodes based on films with the c-axis normal to the substrate surface. Using scanning tunneling microscopy, we observe an energy gap of about 10–17 meV at the surface of the 15- nm-thick gold layer deposited in situ atop the YBCO film. To study the origin of this gap, we fabricate nanoconstrictions from the Au/YBCO heterostructure and measure their electrical transport characteristics. The conductance of the nanoconstrictions shows a series of dips due to multiple Andreev reflections in YBCO and gold providing clear evidence of the superconducting nature of the gap in gold. We consider the Au/YBCO electrodes to be a versatile platform for hybrid Josephson devices with a high operating temperature.
Publisher
Research Square Platform LLC