The Effect of the Electronic Structure Method and Basis Set on the Accuracy of the Electric Multipoles Computed With the Distributed Multipole Analysis (DMA)

Author:

Oliveira Roberta Siqueira Soldaini1,Oliveira Marco Aurélio Souza1,Borges Itamar1

Affiliation:

1. Instituto Militar de Engenharia

Abstract

Abstract Context An accurate description of the molecular charge density is crucial for investigating intra- and inter-molecular properties. Among the different ways of describing and analyzing it, the widely used distributed multipole analysis (DMA) is an accurate method for decomposing the molecular charge density into atom-centered electric multipoles (monopole, dipole, quadrupole, and so on) that have a direct chemical interpretation. In this work, DMA was employed to decompose the molecular charge density of six chemically distinct molecules, namely, (2R)-2-amino-3-[(S)-prop-2-enylsulfinyl] propanoic acid (AAP), 4-amine-2-nitro-1,3,5 triazole (ANTA), (RS)-Propan-2-yl methylphosphonofluoridate (SARIN), chloromethane (CLMET) and 2-aminoacetic acid (GLY) into monopole, dipole, and quadrupole values. A hypothetical variation of ANTA built by exchanging all the nitrogen atoms with phosphorus that we named 4-phosphine-2-phosphite-1,3,5-phosphorine (ANTAP) was also studied. These molecules have different chemical structures bearing distinct carbon skeletons, electronegative atoms, and electron-withdrawing/donating groups. We found that although DFT multipole values can depend considerably on the exchange-correlation functional for specific atomic sites, the associated root-mean-square errors (RMSE) compared to benchmark MP4 mainly were about 10-4 - 10-6The most significant variations were for monopoles and dipoles of sites highly polarized by adjacent atoms, and to a lesser degree, for the quadrupoles. The double hybrid B2PLYP and the hybrid meta M06-2X functionals, as expected in the framework of Jacob’s ladder, overall give the most accurate results among the DFT methods. The MP2 DMA multipole values have an RMSE in relation to the MP4 benchmark mainly in the range , thus representing a lower computational cost to obtain results with similar good accuracy without the ambiguity of choosing a DFT functional. The deviations of the HF multipoles from the benchmark in most cases were less than 20%, in agreement with the well-known fact that non-correlated charge densities have a slight dependence on the electronic correlation. We also confirmed that DMA values have a small dependence on the size of the basis set: deviations did not exceed 5% in most cases. However, the dependence of the DMA values on the size of the basis set increases with the rank of the electric multipole. To compute accurate values of DMA multipoles of an atom bonded to very electronegative atoms, especially dipoles (a measure of polarization) and quadrupoles (a measure of electron delocalization), a large basis set including diffuse functions is necessary. Despite that, for a given polarized basis set, the choice of the basis set to compute accurate DMA multipole values is not critical. Methods The molecular charge densities were computed using the electronic structure methods Hartree-Fock (HF), MP2, MP4, DFT/PBE, DFT/B3LYP, DFT/B3PW91, DFT/M06-2X, and DFT/B2PLYP implemented in the Gaussian 09 package. MP4 was the benchmark method. The DMA multipoles were obtained with the GDMA program of Stone. The 6-311G++(d,p) basis set was used for the production calculations, and the augmented correlation-consistent Dunning’s hierarchy of basis sets were employed to evaluate the dependence of the DMA multipoles on the basis set size.

Publisher

Research Square Platform LLC

Reference58 articles.

1. The interplay between experiment and theory in charge-density analysis;Coppens P;Acta Crystallogr Sect A,2004

2. Koch WH, M. C. (2002) A Chemist's Guide to Density Functional Theory. 2nd edn. Wiley-VCH, Weinheim

3. Cramer CJ (2004) Essentials of Computational Chemistry: Theories and Models. John Wiley & Sons, Chichester

4. Advances in Understanding of Chemical Bonding: Inputs from Experimental and Theoretical Charge Density Analysis;Chopra D;J Phys Chem A,2012

5. Gatti C, Macchi P (2012) Modern Charge-Density Analysis. Springer, New York

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3