Plasmodesmata callose binding protein 2 contributes to the regulation of cambium/phloem formation and auxin response during the tissue reunion process in incised Arabidopsis stem

Author:

Ohba Yusuke1,Yoshihara Sakura1,Sato Ryosuke2,Matsuoka Keita2,Asahina Masashi2,Satoh Shinobu3ORCID,Iwai Hiroaki3ORCID

Affiliation:

1. University of Tsukuba Graduate School of Life and Environmental Sciences: Tsukuba Daigaku Daigakuin Seimei Kankyo Kagaku Kenkyuka

2. Teikyo University - Utsunomiya Campus: Teikyo Daigaku - Utsunomiya Campus

3. University of Tsukuba: Tsukuba Daigaku

Abstract

Abstract Plants are exposed to a variety of biotic and abiotic stresses, including wounding at the stem. The healing process (tissue reunion) begins immediately after stem wounding. The plant hormone auxin plays an important role during tissue reunion. In decapitated stems, auxin transport from the shoot apex is inhibited and tissue reunion does not occur but is restored by application of indole-3-acetic acid (IAA). In this study, we found that plasmodesmata callose binding protein 2 (PDCB2) affects the expansion of the cambium/phloem region via changes in auxin response during the process of tissue reunion. PDCB2 was expressed in the cortex and endodermis on the incised side of stems 1–3 days after incision. PDCB2-knockout plants showed reduced callose deposition at plasmodesmata and DR5::GUS activity in the endodermis/cortex in the upper region of the incision accompanied by an increase in size of the cambium/phloem region during tissue reunion. In addition, PIN(PIN-FORMED)3, which is involved in lateral auxin transport, was induced by auxin in the cambium/phloem and endodermis/cortex in the upper part of the incision in wild type, but its expression of PIN3 was decreased in pdcb2 mutant. Our results suggest that PDCB2 contributes to the regulation of cambium/phloem development via auxin response.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3