Siamese tracking network with multi-attention mechanism

Author:

Xu Yuzhuo1,Li Ting1,Zhu Bing2,Wang Fasheng1,Sun Fuming1

Affiliation:

1. Dalian Minzu University

2. Harbin Institute of Technology

Abstract

Abstract Object trackers based on Siamese networks view tracking as a similarity-matching process. However, the correlation operation operates as a local linear matching process, limiting the tracker's ability to capture the intricate nonlinear relationship between the template and search region branches. Moreover, most trackers don't update the template, and often use the first frame of an image as the initial template, which will easily lead to poor tracking performance of the algorithm when facing instances of deformation, scale variation and occlusion of the tracking target. To this end, we propose a Simases tracking network with multi-attention mechanism, including a template branch and a search branch. To adapt to changes in target appearance, we integrate dynamic templates and multi-attention mechanism in the template branch to obtain more effective feature representation by fusing the features of initial templates and dynamic templates. To enhance the robustness of the tracking model, we utilize a multi-attention mechanism in the search branch that shares weights with the template branch to obtain multi-scale feature representation by fusing search region features at different scales. In addition, we design a lightweight and simple feature fusion mechanism, in which the Transformer encoder structure is utilized to fuse the information of the template area and search area, and the dynamic template is updated online based on confidence. Experimental results on publicly tracking datasets show that the proposed method achieves competitive results compared to several state-of-the-art trackers.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3