Bayesian Inference on the Burr type-XII Model Parameters Based on Progressive type-II Fuzzy Order Statistics

Author:

Maswadah M.1ORCID

Affiliation:

1. Aswan University

Abstract

Abstract In statistical inference, the experimental results are usually considered precise information. However, these results cannot always be recorded or measured precisely, which is called Fuzzy data, which can be considered an imprecise type of data with a source of uncertainty. This paper presents a Fuzzy Bayesian estimation for Burr type-XII distribution parameters based on progressive type-II fuzzy order statistics. The Bayesian estimators have been derived by Tierney-Kadane and Monte Carlo integration approximations and compared with the exact Bayesian estimators, via Monte Carlo simulations. The simulation results indicated that the exact Bayes results provide better estimators and outperform the other approximation methods. Finally, a numerical example is given to demonstrate the efficiency of the proposed methods.

Publisher

Research Square Platform LLC

Reference30 articles.

1. A simple simulation algorithm for generating progressive type-II censored samples;Balakrishnan N;The American Statistician,1995

2. Analyzing System Reliability Using Fuzzy Weibull Lifetime Distribution;Baloui Jamkhaneh E;International Journal of Applied Operational Research,2014

3. Maximum likelihood estimation from fuzzy data using the EM algorithm;Denoeux T;Fuzzy Sets and Systems,2011

4. Maximum likelihood from incomplete data via the EM algorithm;Dempster AP;J. Roy. Statist. Soc. Ser. B,1977

5. The Burr type-XII distribution with some statistical properties;Kumar D;Journal of Data Science,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3