Unraveling the Independent Role of METTL3 in m6A Modification and Tumor Progression in Esophageal Squamous Cell Carcinoma

Author:

Wang Pu1,Wei Lingyu2,Du Bin1,Qin Kai1,pei Zhen1,Zheng Jinping1,Wang Jia1

Affiliation:

1. Changzhi Medical College

2. Heping Hospital Affiliated to Changzhi Medical College

Abstract

Abstract METTL3 and METTL14 are considered to faithfully form the m6A writing complex in a 1:1 ratio, regulating the fate of mRNA by adding m6A modifications. However, recent studies have shown inconsistent expression and prognostic value of METTL3 and METTL14 in some tumors, suggesting that they may not be faithful in tumors. Pan-cancer analysis based on TCGA data reveals significant differences in expression, function, tumor burden correlation, and immune correlation between METTL3 and METTL14, especially in esophageal squamous cell carcinoma (ESCC). Knockdown of METTL3 significantly inhibits the cell proliferation in vitro and in vivo in ESCC EC109 cells, while the impact of METTL14 knockdown on proliferation is limited, and it cannot abolish the expression of METTL3 protein. mRNA-seq results indicate that METTL3 independently regulates the expression of 1615 genes, while only 776 genes are co-regulated by METTL3 and METTL14. Furthermore, through immunofluorescence co-localization, it is observed that METTL3 and METTL14 have certain inconsistencies in cellular localization. HPLC-MS results show that METTL3 independently binds to the Nop56p-associated pre-rRNA complex and mRNA splicing complex, separate from METTL14. Through bioinformatics and various omics studies, we have preliminarily discovered that METTL3 independently regulating tumor cell proliferation, and the participation in mRNA splicing may be a critical molecular mechanism. Our study provides an experimental basis and theoretical foundation for further understanding of the m6A writing complex and tumor therapy targeting METTL3.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3