Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application

Author:

Chen Zhen1,Wang Fazhan1,Yu Wenbo1,Wang Yixuan2

Affiliation:

1. Xi’an University of Architecture & Technology

2. University of Exeter

Abstract

Abstract To make more accurate predictions of the effective thermal conductivity of the composites, a systematic method for predicting the effective thermal conductivity of metal matrix particle composites with arbitrarily shaped particles was proposed, and the geometry of random particles with controlled shape characteristics is reconstructed. In addition, the geometric vertices of the reconstructed particles are used to characterize the morphology of inclusions with complex profile in two-dimensional isotropic elasticity, and its explicit expression for the Eshelby tensor are explored. Moreover, the material mismatch between the particles and the matrix phase is simulate using a continuously distributed source field based on the Eshelby's equivalent inclusion method. The relationship between micro-structure and effective performance is established. Finally, the effective thermal conductivity of CuCr alloys was predicted using the ETC prediction model. Through the comparison of the numerical simulations, experiments, and calculations, the results show that the ETC model has reliable predictive capability.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3