Effect of deep gray matter atrophy on information processing speed in early relapsing- remitting multiple sclerosis

Author:

Naghavi Saba1,Ashtari Fereshteh1,Adibi Iman1,Shaygannejad Vahid1,Ramezani Neda1,Pourmohammadi Ahmad2,Davanian Fariba1,Karimi Zahra1,Khaligh-Razavi Seyed-Mahdi3,Sanayei Mehdi2

Affiliation:

1. Isfahan University of Medical Sciences

2. Institute for Research in Fundamental Sciences (IPM)

3. Cognetivity Ltd

Abstract

Abstract Background. Cognitive dysfunction, including Information processing speed (IPS), is relatively common in multiple sclerosis(MS). IPS deficits have profound effects on several aspects of patients’ life. Previous studies showed that deep gray matter atrophy is highly correlated with overall cognitive impairment in MS. However, the effect of deep gray matter atrophy on IPS deficits is not well understood. In this study, we evaluated the effects of deep gray matter volume changes on IPS in early relapse-remitting MS (RRMS) patients compared to healthy control. Methods. In this case-control study, we enrolled 63 RRMS patients and 36 healthy controls. All patients were diagnosed within 6 years. IPS was evaluated using the Integrated Cognitive Assessment (ICA) test. We also performed a 1.5T MRI to evaluate deep gray matter structures. Results. RRMS patients had lower accuracy in the ICA test (p = .01). However, the reaction time did not significantly differ between RRMS and control groups (p = .6). Thalamus volume was significantly lower in the RRMS group with impaired IPS compared to the RRMS with normal IPS and control groups (p < 10-4). Other deep gray matter structures were not significantly different between the RRMS with impaired IPS group and the RRMS with normal IPS group. Conclusion. MS patients are impaired in IPS even in the early stages of the disease. Thalamic atrophy affected IPS in these patients, however atrophy in other deep gray matter structures, including caudate, putamen, globus pallidus, hippocampus, amygdala, accumbens, and cerebellum, were not significantly correlated with IPS impairment in early RRMS.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3