ABCC10-mediated Oxaliplatin resistance in colorectal cancer cells was alleviated by intense endoplasmic reticulum stress (ERS) / IRE1α

Author:

Liu Xiaohui1,Chen Hong1,Sun Haimei1,Guo Xiaoxia1,Wu Bo1,Sun Tingyi1,Ji Fengqing1,Yang Shu1,Zhou Deshan1

Affiliation:

1. Capital Medical University

Abstract

Abstract Background Oxaliplatin resistance is a challenge in treating colorectal cancer (CRC) patients, contributory to the failure in chemotherapy and the risks in relapse and metastasis. However, the mechanism of Oxaliplatin resistance has not been completely elucidated. Methods Microarray screening, western blot and qPCR on clinic CRC samples were conducted to select the target gene ABCC10 transporter. The Cancer Genome Atlas data was analyzed to figure out the correlation between the clinical manifestation and ABCC10 expression. ABCC10 knock-down in CRC cells was conducted to identify its role in the Oxaliplatin resistance. Cell counting kit-8 assay was conducted to identify the CRC cell viability and Oxaliplatin IC50. Flow cytometry was conducted to detect the cell apoptosis exposed to Oxaliplatin. The intracellular Oxaliplatin accumulation was measured by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. Results CRC patients with higher ABCC10 were prone to relapse and metastasis. Differential ABCC10 expression in multiple CRC cell lines revealed a strong positive correlation between ABCC10 expression level and Oxaliplatin resistance. In ABCC10 knock-down CRC cells the Oxaliplatin sensitivity was evidently elevated due to an increase of intracellular Oxaliplatin accumulation resulted from the diminished drug efflux. To explore a strategy to block ABCC10 in CRC cells, we paid a special interest in the endoplasmic reticulum stress (ERS) / unfolded protein response (UPR) that plays a dual role in tumor development. We found that neither the inhibition of ERS nor the induction of mild ERS had anti-CRC effect. However, the CRC cell viability was profoundly decreased and the pro-apoptotic factor CHOP and apoptosis were increased by the induction of intense ERS. Significantly, the Oxaliplatin sensitivity of CRC cells was enhanced in response to the intense ERS, which was blocked by inhibiting IRE1α branch of UPR. Finally, we figured out that the intense ERS down-regulated ABCC10 expression via regulated IRE1-dependent decay activity. Conclusion Oxaliplatin was a substrate of ABCC10 efflux transporter. The intense ERS/IRE1α alleviated Oxaliplatin resistance through down-regulating ABCC10 in addition to inducing CHOP. We suggested that introduction of intense ERS/UPR could be a promising strategy to restore chemo-sensitivity when used in combination with Oxaliplatin or other chemotherapeutic drugs pumped out by ABCC10.

Publisher

Research Square Platform LLC

Reference43 articles.

1. Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. The International Agency for Research On Cancer.

2. Colorectal cancer;Dekker E;Lancet.,2019

3. Determinants of metastatic competency in colorectal cancer;Tauriello DV;Mol Oncol,2017

4. Mechanisms of Multidrug Resistance in Cancer Chemotherapy;Bukowski K;International journal of molecular sciences.,2020

5. Membrane transporters in drug development;Giacomini KM;Nature reviews Drug discovery.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3