A Preclinical Model of Obesity-Independent Metabolic Syndrome for Studying the Effects of Novel Antidiabetic Therapy Beyond Glycemic Control

Author:

Mochel Jonathan P1ORCID,Ward Jessica L.,Blondel Thomas,Kundu Debosmita,Merodio Maria M.,Zemirline Claudine,Guillot Emilie,Giebelhaus Ryland T.,Mata Paulina de la,Iennarella-Servantez Chelsea A.,Blong April,Nam Seo Lin,Harynuk James J.,Suchodolski Jan,Tvarijonaviciute Asta,Cerón José Joaquín,Bourgois-Mochel Agnes,Zannad Faiez,Sattar Naveed,Allenspach Karin

Affiliation:

1. University of Georgia

Abstract

Abstract Accumulating data from several large, placebo-controlled studies suggests that sodium-glucose transporter 2 (SGLT-2) inhibitors and glucagon-like peptide 1 receptor (GLP-1) receptor agonists offer therapeutic benefits in the management of cardiovascular diseases, regardless of the patient's diabetic status. In addition to their effects on glucose excretion, SGLT2-inhibitors have a positive impact on systemic metabolism by reducing inflammation and oxidative stress, shifting metabolism towards ketone body production, and suppressing glycation end-product signaling. The aim of this study was to establish a non-invasive preclinical model of metabolic syndrome (MetS) to investigate the effects of novel antidiabetic therapies beyond glucose reduction, independent of obesity. Eighteen healthy adult Beagle dogs were fed isocalorically a Western diet (WD) adjusted from parameters of the National Health and Nutrition Examination Survey for ten weeks. Blood samples were collected at baseline (BAS1) when dogs were fed their regular diet, and then again after ten weeks of WD feeding (BAS2) for measurement of blood count and serum chemistry, lipoprotein profiling, fasting blood glucose, glucagon, insulin, NT-proBNP, BUN, creatinine, angiotensins and oxidative stress biomarkers. Blood pressure (BP) was measured at BAS1 and BAS2 using Doppler. Serum, urine and fecal metabolomics were derived by mass spectrometry to assess general metabolism, complex lipids and biogenic amines. Differences between BAS1 and BAS2 were analyzed using non-parametric Wilcoxon signed rank testing with continuity correction, as appropriate. Body weight changes did not exceed 13% after ten weeks of feeding with the WD. The isocaloric WD model induced significant variations in several markers of MetS, including (1) elevated BP, (2) increased fasting glucose levels, and (3) reduced HDL-cholesterol. It also triggered a significant decrease in circulating insulin, as well as an increase in circulating NT-proBNP levels and a decrease in serum bicarbonate levels. Marked and significant changes in overall metabolism, lipids, and biogenic amines were finally reported at BAS2. Short-term, isocaloric feeding with a WD in dogs replicates key biological features of MetS, while also causing low-grade metabolic acidosis and elevating natriuretic peptides. These findings support the use of the WD canine model for studying the metabolic effects of new antidiabetic therapies independent of obesity.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3