Preclinical Lymph Node Model for Intraoperative Molecular Imaging of Cancer

Author:

Bou-Samra Patrick1ORCID,Chang Austin1,Arambepola Sachinthani1,Guo Emily1,Azari Feredun1,Kennedy Gregory1,Segil Alix1,Singhal Sunil1ORCID

Affiliation:

1. University of Pennsylvania Perelman School of Medicine

Abstract

Abstract Purpose Lymph node(LN) dissection is part of most oncologic resections. Intraoperatively identifying a positive LN(+ LN), that harbors malignant cells, can be challenging. We hypothesized that intraoperative molecular imaging(IMI) using a cancer-targeted fluorescent prober can identify + LNs. This study aimed to develop a preclinical model of a + LN and test it using an activatable cathepsin-based enzymatic probe, VGT-309. Procedures In the first model, we used peripheral blood mononuclear cells (PBMC), representing the lymphocytic composition of the LN, mixed with different concentrations of human lung adenocarcinoma cell line A549. Then, they were embedded in a Matrigel® matrix. A black dye was added to mimic LN anthracosis. Model two was created using a murine spleen, the largest lymphoid organ, injected with various concentrations of A549. To test these models, we co-cultured A549 cells with VGT-309. Mean fluorescence intensity(MFI) was. An independent sample t-test was used to compare the average MFI of each A549:negative control ratio. Results A significant difference in MFI from our PBMC control was noted when A549 cells were 25% of the LN (p = 0.046) in both 3D cell aggregate models-where the LNs native parenchyma is replaced and the one where the tumor grows over the native parenchyma. For the anthracitic equivalents of these models, the first significant MFI compared to the control was when A549 cells were 9% of the LN (p = 0.002) in the former model, and 16.7% of the LN (p = 0.033) in the latter. In our spleen model, we first noted significance in MFI when A549 cells were 16.67% of the cellular composition.(p = 0.02) Conclusions A + LN model allows for a granular evaluation of different cellular burdens in + LN that can be assessed using IMI. This first exvivo + LN model can be used in preclinical testing of several existing dyes and in creating more sensitive cameras for IMI-guided LN detection.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3