Digital image enhancement using Deep learning algorithm in 3D heads-up vitreoretinal surgery

Author:

Hwang Sung Ha1,Cho Jae Bok2,Kim Young Jae3,Nam Dong Heun1

Affiliation:

1. Gachon University

2. Medical Device R&D center, Gachon University

3. Department of Pre-Medicine, Gachon University

Abstract

Abstract This study aims to predict the optimal imaging parameters using a deep learning algorithm in 3D heads-up vitreoretinal surgery and assess its effectiveness on improving the vitreoretinal surface visibility during surgery. To develop the deep learning algorithm, we utilized 212 manually-optimized still images extracted from epiretinal membrane (ERM) surgical videos. These images were applied to a two-stage Generative Adversarial Network (GAN) and Convolutional Neural Network (CNN) architecture. The algorithm’s performance was evaluated based on the peak signal-to-noise ratio (PSNR) and structural similarity index map (SSIM), and the degree of surgical image enhancement by the algorithm was evaluated based on sharpness, brightness, and contrast values. A survey was conducted to evaluate the intraoperative suitability of optimized images. For an in-vitro experiment, 121 anonymized high-resolution ERM fundus images were optimized using a 3D display based on the algorithm. The PSNR and SSIM values are 34.59 ± 5.34 and 0.88 ± 0.08, respectively. The algorithm enhances the sharpness, brightness and contrast values of the surgical images. In the in-vitro experiment, both the ERM size and color contrast ratio increased significantly in the optimized fundus images. Both surgical and fundus images are digitally enhanced using a deep learning algorithm. Digital image enhancement using this algorithm can be potentially applied to 3D heads-up vitreoretinal surgeries.

Publisher

Research Square Platform LLC

Reference26 articles.

1. Deep-learning-based enhanced optic-disc photography;Ha A;PLoS One,2020

2. CycleGAN-based deep learning technique for artifact reduction in fundus photography;Yoo TK;Graefes Arch ClinExpOphthalmol,2020

3. Retinal image enhancement Using Cycle-Constraint Adversarial Network;Wan C;Front Med (Lausanne),2021

4. Optimizing color performance of the Ngenuity 3-dimensional visualization system;Minaker SA;OphthalmolSci,2021

5. Optimizing visualization of membranes in macular surgery with heads-up display;Melo AGR;Ophthalmic Surg Lasers Imaging Retina,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3