Affiliation:
1. Manaaki Whenua - Landcare Research
2. Manaaki Whenua: Landcare Research New Zealand
3. New Zealand Forest Research Institute: Scion
Abstract
Abstract
Inputs of carbon to soil may be used to stimulate microbial growth and immobilize excess nitrogen from sources such as livestock urine. However, the growth responses of microbial taxa to carbon inputs under conditions of excess soil nitrogen remain poorly understood. Using DNA metabarcoding and a field-based soil lysimeter experiment, we characterised the temporal responses (up to 112 days) of bacterial and fungal communities to a simulated bovine urine event plus inputs of labile carbon (sucrose) at two concentrations. Fungal communities were impacted more strongly than bacterial communities by carbon inputs under simulated urine patch conditions and had more variable responses among taxa. The richness of Chytridiomycota and Glomeromycota were most negatively affected, and Tremellomycetes most positively affected, by carbon inputs. A minority of fungal ASVs had greatly increased abundances in response to carbon, while fungal trophic composition became highly dominated by saprotrophs by the experiment end. Bacterial taxa showed consistent trends of declining (to about 14 days) and recovering (to 112 days) richness in response to urine and carbon inputs, but carbon-related evenness and abundance trends varied between taxa. Actinobacteria, Bacteroidetes, Betaproteobacteria, and Gammaproteobacteria each increased in abundance in response to carbon, whereas Acidobacteria, candidate division WPS-1, Planctomycetes, Deltaproteobacteria, and Verrucomicrobia each decreased in abundance. These results show that labile carbon inputs to limit nitrogenous leaching support the resilience of prokaryote communities to bovine urine events but may have long-term impacts on fungal community composition and function, with potential consequences for soil food webs, carbon sequestration, and agricultural productivity.
Publisher
Research Square Platform LLC