Selection Strategies in Wheat Populations

Author:

Mezzomo Henrique Caletti1,Silva Caique Machado e1,Casagrande Cleiton Renato1,Lima Gabriel Wolter1,Ribeiro João Paulo Oliveira1,Eides José Renato2,Graças Kaio Olímpio das1,Borém Aluízio1,Nardino Maicon1

Affiliation:

1. Universidade Federal de Viçosa

2. Cooperativa Agropecuária do Alto Paranaíba

Abstract

Abstract The selection of segregating populations is a key point in plant breeding programs. These should gather favorable phenotypes for multiple target characters, which makes it difficult to identify populations with high potential. Thus, this research aims to select potential wheat populations with precocity and grain yield by multivariate and multigeneration approaches. To achieve these objectives, 54 wheat populations in generations F2 and F3 were tested in two environments and evaluated for the traits days for heading and grain yield. Four analytic strategies were imposed: Strategy I: univariate model for each generation; Strategy II: univariate model and multigeneration; Strategy III: multivariate model for each generation; Strategy IV: multivariate model and multigeneration. In this scenario, the strategies that involved the multi-generation model (environments) provided greater gains, strategies I and III. Nevertheless, strategy I, involving a univariate model, provided the greatest gain. Within the strategies, the 1D, 1G, 1H, 2D, 2E, 2F, 2G and 3H populations were selected by different strategies, being the most promising for derivation of early cycle and with grain productivity.

Publisher

Research Square Platform LLC

Reference28 articles.

1. Genetic gain in yield and changes associated with physiological traits in Brazilian wheat during the 20th century;Beche E;Eur J Agron,2014

2. Butler DG, Cullis BR, Gilmour AR, Gogel BJ, Thompson R (2018) ASReml-R reference manual Version 4. VSN International, Hemel Hempstead, UK.

3. Multivariate best linear unbiased predictor as a tool improve multi-trait selection in sugarcane;Carvalho IR;Pesq Agrop Bras,2020

4. S1678-3921.pab2020.v55.00518.

5. A coefficient of agreement for nominal scales;Cohen J;Educ Psychol Meas,1960

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3