Response Surface Methodology (RSM) Design to Optimize the Cathode of Li-ions Batteries Recycling in Deep Eutectic Solvent and DFT Simulation

Author:

Karimi Saeed1,Maftoon-Azad Leila2,Behnajady Bahram3ORCID,Tüzün Burak4

Affiliation:

1. Hamedan University of Technology

2. Persian Gulf University

3. Sahand University of Technology

4. Sivas Cumhuriyet Universitesi

Abstract

Abstract

In this study, the dissolution of a cathode of Li-ion batteries (CLIB) in a deep eutectic solvent (DES) composed of choline chloride (ChCl) and glucose (G) was investigated using the response surface methodology (RSM) experimental design. The temperature ranged from 45 to 105°C, time from 2 to 26 h, agitation from 250 to 850 rpm, and DES/CLIB ratio from 20 to 100 g/g. According to the analysis of variance (ANOVA), temperature had the most significant impact on the dissolution of all elements (Ni, Co, Mn, and Li). In contrast, agitation had no significant effect on metal recoveries. Under optimal conditions, including a temperature of 93°C, a time of 20 h, an agitation of 550 rpm, and a DES/CLIB ratio of 80 g/g, the efficiencies of Ni, Co, Mn, and Li were 85.7%, 90.1%, 89.6%, and 93.2%, respectively, which matched well with the modeling results. This paper presents a comprehensive DFT investigation at the B3LYP/6-31G(d) level of theory on the behavior of transition metal cations in the presence of ChCl and G. Findings elucidate the preference of specific cations for particular ligands, the stability of complex formations, and the crucial role of ligands in electron transfer processes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3