Natural phytochemicals, Phenformin, and Docosahexaenoic acid (DHA) as a Novel Inhibitors of IL-6 and ACE2 receptors, a Therapeutic Strategy for targeting COVID-19 Cell Entry and Cytokine Storm. An insilico Approach

Author:

Ahmed Amr kamel khalil1ORCID,Elkazzaz Mahmoud2ORCID

Affiliation:

1. Director of tuberculosis program Ghubera, public health department ,First health cluster ,Ministry of health , Riyadh, Saudia Arabia

2. Department of chemistry and biochemistry, Faculty of Science, Damietta University, Egypt

Abstract

Abstract Cytokine storm syndrome (CSS) is a life-threatening consequence of inflammatory immunological illnesses; it can also occur with COVID-19 infection. CSS is characterized by a disruption in cytokine synthesis, including regulatory, pro-inflammatory and anti-inflammatory cytokines, resulting in pathologic stimulation of innate in addition to adaptive (Th17 and Th1 mediated) response. In the pathophysiology of CSS, interleukin-6 could play a key role. The significant role of IL-6 in COVID-19 pathogenesis was established in a wide variety of researches, which reported that the plasma concentration of IL-6 was raised in COVID-19 patients with severe symptoms. COVID-19 spike protein binding to angiotensin-converting enzyme 2 (ACE2), the virus's cellular receptor, causes a cascade of molecular processes that could result in hyperinflammation which may lead to cytokine storm. Therefore, the development of new natural therapies and repurposing some drugs such as Phenformin and Docosahexaenoic acid that could compete with COVID-19 for ACE2 binding or inhibit IL-6 activity may possibly help COVID-19 patients avoid a cytokine storm and save their lives through inhibiting IL-6 and preventing SARS-CoV-2 RBD attachment to ACE2. Herein we made a docking based screening for some natural phytochemicals and drugs that could be repurposed according to our findings to counter COVID-19 cell entry and inhibit the hyper activation of IL-6. Our results revealed that a five phytochemicals including Epigallocatechin gallate (EGCG), bromelain, luteolin, vitexin and isovitexin) showed a high binding affinities with best interactions with the active sites of IL-6. The binding affinities of these phytochemicals including, EGCG, bromelain, luteolin, vitexin and isovitexin with IL-6 were (-7.7, -6.7, -7.4, -7.2 and − 7.3 ), respectively. In addition to, phenformin showed a high binding affinity with best interactions with the active sites of IL-6 and ACE2. The binding affinity of phenformin with IL-6 was (-7.4) and with ACE 2 ( -7.2). Docosahexaenoic acid (DHA) had a moderate binding affinity and moderate interactions with the active sites of IL-6 and had a high binding affinity with best interactions with ACE2 active sites. The binding affinity of Docosahexaenoic acid(DHA) with IL-6 was (-5.3) and with AC2 (-6.3).ConclusionProposing possible IL-6 inhibitors with less adverse effects has been suggested as a way to aid COVID-19 patients who are suffering from severe cytokine storms. This study has been designed to elucidate the potential of potent antiviral phytocompounds as well as phenformin and Docosahexaenoic acid (DHA) as a potent ACE2 and IL-6 inhibitors. The compounds interact with different active sites of IL6 and ACE2 which are involved in direct or indirect contacts with the ACE2 and IL-6 receptors which might act as potential blockers of functional ACE2 and IL-6 receptor complex. It worth mentioning that phenformin which showed high binding affinity with both ACE2 and IL-6 is currently under investigation for treating COVID-19 ClinicalTrials.gov Identifier: NCT05003492

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3