Experimental and Numerical Mudflows Modeling for Runout and Deposition Height Assessmen

Author:

Muñoz Fredy1ORCID,Vega Johnny2,Hidalgo César2

Affiliation:

1. Universidad Cooperativa de Colombia

2. University of Medellin: Universidad de Medellin

Abstract

Abstract Mudflows are natural phenomena starting from landslides and presenting high impact when they occur. They generate great catastrophes in their path because most of the time there is no indication prior to the failure that triggers them. Understanding how mud is transported is of great importance in infrastructure projects that coincide with hillside areas due to the high risk of occurrence of this phenomenon by cause of the high slopes, which can involve great risks and produce disasters that involve great costs. This work presents the evaluation of mudflows, from the implementation of a laboratory scale experiment in a consistometer with its calibration and validation from numerical models to estimate rheological parameters of the material. Tests were also carried out in an open channel in the laboratory, based on the data previously obtained considering the behavior of the material as a both Newtonian fluid and non-Newtonian fluid. The experiment considered a channel with dimensions of 3 m long, 0.5 m high and 0.7 m wide with slope control, and a mud composition of silty material with 60% moisture. The tests were conducted with slopes of 5%, 10%, 15% and 20%. The numerical models were carried out in ANSYS FLUENT software. In addition, the calibration data of the numerical model were used for a real case study, simulating the slip flow occurred in Yangbaodi, in the southeast of China, occurred on September 18, 2002. The results of the numerical models were compared with the experimental results and show that these have a great capacity to reproduce what is observed in the laboratory when the material is considered as a non-Newtonian fluid. The model reproduced in an appropriate way the movement of the flow at laboratory scale, and for the aforementioned case study, some differences in the final length of deposition were noticed, achieving interesting results that lead the use of the calibrated model towards the estimation of risks due to the mudflow occurrence.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3