Breaking RSA Encryption Protocol with Kernel P Systems

Author:

Vasile Răzvan1,Gheorghe Marian2,Niculescu Ionuț Mihai1

Affiliation:

1. University of Bucharest

2. University of Bradford

Abstract

Abstract The prime factorisation problem is intractable, i.e., no efficient algorithm is known. In cryptography there are some well-known approaches based on the computational hardness of this problem, including Rivest-Shamir-Adleman (RSA) encryption protocol. Several attemps to break RSA have been investigated, some of them based on the massive parallelism of membrane systems.In this paper a new approach, based on kernel P system formalism, aimed at reassessing the space-time tradeoff, usually involved in membrane computing solutions, is investigated. Two models are introduced and assessed in order to find the potential benefits of each of them for solving the above problem, revealing also their limitations and providing hints for further improvements.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Privacy-preserving Linear Computations in Spiking Neural P Systems;Electronic Proceedings in Theoretical Computer Science;2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3