Using Spectral and Temporal Filters with EEG Signal to Predict the Temporal Lobe Epilepsy Outcome after Antiseizure Medication via Machine Learning

Author:

Shin Youmin1,Hwang Sungeun2,Lee Seung-Bo3,Son Hyoshin1,Chu Kon1,Jung Ki-Young1,Lee Sang Kun1,Park Kyung-Il4,Kim Young-Gon1

Affiliation:

1. Seoul National University Hospital

2. Ewha Womans University Mokdong Hospital

3. Keimyung University School of Medicine

4. Seoul National University College of Medicine

Abstract

Abstract Epilepsy is a neurological disorder in which transient alteration of brain. Predicting outcomes in epilepsy is essential since the prediction could provide feedback that can foster improvement in the outcomes. This study aimed to investigate whether applying spectral and temporal filters to resting-state electroencephalogram (EEG) signals could improve the prediction of patients' outcomes after antiseizure medication for temporal lobe epilepsy (TLE). We collected EEG data from a total of 46 patients (seizure-free (SF, n = 22) or nonseizure-free (NSF, n = 24)) with TLE and reviewed their clinical data retrospectively. We dissected spectral and temporal ranges with various time-domain features (Hjorth parameters, statistical parameters, energy, and zero-crossing rate) and compared their performance by applying optimal frequency only, optimal duration only, and both. For all time-domain features, optimal frequency and time strategy (OFTS) showed the highest performance in distinguishing SF patients from NSF patients (0.759 ± 0.148 AUC). In addition, the best performance using statistical parameters as a feature vector was a frequency band of 39–41 Hz at a window length of 210s, with an AUC of 0.748. By identifying the optimal parameters, we improved the prediction model’s performance. These parameters can function as standard parameters for outcome prediction using resting-state EEG signals.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3