Affiliation:
1. University of Wisconsin-Madison
2. University of Illinois at Urbana-Champaign
Abstract
Abstract
Anthocyanins are colorful molecules receiving recent attention due to their numerous health benefits and applications as natural colorants and nutraceuticals. Purple corn is being investigated as a more economical source of anthocyanins. Anthocyanin3 (A3) is a known recessive intensifier of anthocyanin pigmentation in maize. In this study, anthocyanin content was elevated 100-fold in recessive a3 plants. Two approaches were used to discover candidates involved with the a3 intense purple plant phenotype. First, a large-scale transposon-tagging population was created with a Dissociation (Ds) insertion in the nearby Anthocyanin1 gene. A de novo a3-m1::Ds mutant was generated and the transposon insertion was found to be located in the promoter of Mybr97, which has homology to R3-MYB repressor CAPRICE in Arabidopsis. Second, a bulk segregant RNA-sequencing population found expression differences between pools of green A3 plants and purple a3 plants. All characterized anthocyanin biosynthetic genes were upregulated in a3 plants along with several genes of the monolignol pathway. Mybr97 was highly downregulated in a3 plants, suggesting its role as a negative regulator of the anthocyanin pathway. Photosynthesis-related gene expression was reduced in a3 plants through an unknown mechanism. Numerous transcription factors and biosynthetic genes were also upregulated and need further investigation. Mybr97 may inhibit anthocyanin synthesis by associating with basic-helix-loop-helix transcription factors like Booster1. Overall, Mybr97 is the most likely candidate gene for the A3 locus. A3 has a profound effect on the maize plant and has many favorable implications for crop protection, human health, and natural colorant production.
Publisher
Research Square Platform LLC